题目内容

13.已知偶函数f(x)满足当x>0时,3f(x)-2f($\frac{1}{x}$)=$\frac{x}{x+1}$,则f(-2)等于(  )
A.$\frac{8}{13}$B.$\frac{4}{3}$C.$\frac{4}{15}$D.$\frac{8}{15}$

分析 先利用方程组法,求出当x>0时,函数f(x)的解析式,进而再根据偶函数的性质得到f(-2)=f(2)的值.

解答 解:∵当x>0时,3f(x)-2f($\frac{1}{x}$)=$\frac{x}{x+1}$…①,
∴3f($\frac{1}{x}$)-2f(x)=$\frac{\frac{1}{x}}{\frac{1}{x}+1}$=$\frac{1}{x+1}$…②,
①×3+②×2得:
5f(x)=$\frac{3x+2}{x+1}$,
故f(x)=$\frac{3x+2}{5x+5}$,
又∵函数f(x)为偶函数,
故f(-2)=f(2)=$\frac{8}{15}$,
故选:D.

点评 本题考查的知识点是函数奇偶性的性质,其中根据已知求出当x>0时,函数f(x)的解析式,是解答的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网