题目内容
【题目】设函数,
(1)求函数在上的值域
(2)设,若方程有两个不相等的实数根,求实数的取值范围.
【答案】(1);(2)或.
【解析】
(1)对函数进行求导得,再根据导数不等式求得单调区间和极值,并与区间端点函数值比较,从而得到函数在闭区间的最值,从而得到函数的值域;
(2)由知:,显然是其一个根,所以方程有两个不相等的实数根等价于方程有且仅有一个根且不为0,再利用导数研究的最值和单调性,从而得到参数的取值范围.
(1),令,则
当时,,所以在上递增
当时,,所以在上递减
因为,
所以函数的最小值为,最大值为0,
所以函数的值域是.
(2)由知:,显然是其一个根,所以方程有两个不相等的实数根等价于方程有且仅有一个根且不为0;
令.,
易知在递增,在递减,
当时,,且,
若方程有且仅有一个根且不为0,
所以或.
【题目】下表是某电器销售公司2018年度各类电器营业收入占比和净利润占比统计表:
空调类 | 冰箱类 | 小家电类 | 其它类 | |
营业收入占比 | ||||
净利润占比 |
则下列判断中不正确的是( )
A. 该公司2018年度冰箱类电器营销亏损
B. 该公司2018年度小家电类电器营业收入和净利润相同
C. 该公司2018年度净利润主要由空调类电器销售提供
D. 剔除冰箱类电器销售数据后,该公司2018年度空调类电器销售净利润占比将会降低
【题目】2019年2月25日,第届罗马尼亚数学大师赛(简称)于罗马尼亚首都布加勒斯特闭幕,最终成绩揭晓,以色列选手排名第一,而中国队无一人获得金牌,最好成绩是获得银牌的第名,总成绩排名第.而在分量极重的国际数学奥林匹克()比赛中,过去拿冠军拿到手软的中国队,也已经有连续年没有拿到冠军了.人们不禁要问“中国奥数究竟怎么了?”,一时间关于各级教育主管部门是否应该下达“禁奥令”成为社会热点.某重点高中培优班共人,现就这人“禁奥令”的态度进行问卷调查,得到如下的列联表:
不应下“禁奥令” | 应下“禁奥令” | 合计 | |
男生 | 5 | ||
女生 | 10 | ||
合计 | 50 |
若采用分层抽样的方法从人中抽出人进行重点调查,知道其中认为不应下“禁奥令”的同学共有人.
(1)请将上面的列联表补充完整,并判断是否有的把握认为对下“禁奥令”的态度与性别有关?请说明你的理由;
(2)现从这人中抽出名男生、名女生,记此人中认为不应下“禁奥令”的人数为,求的分布列和数学期望.
参考公式与数据:
0.100 | 0.050 | 0.010 | 0.001 | |
2.706 | 3.841 | 6.635 | 10.828 |