题目内容
.(本小题满分12分)已知椭圆的中心在原点,焦点在
轴上,一个顶点为
,且其右焦点到直线
的距离为3.
(1)求椭圆的方程;
(2)是否存在斜率为
,且过定点
的直线
,使
与椭圆交于两个不同的点
、
,且
?若存在,求出直线
的方程;若不存在,请说明理由.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230738555266.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230738570525.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230738586646.png)
(1)求椭圆的方程;
(2)是否存在斜率为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230738679528.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230738711668.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230738742280.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230738742280.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230738773399.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230738804357.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230738820685.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230738742280.png)
(Ⅰ)
. (Ⅱ)
或
。
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230738851644.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230738867866.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230738898867.png)
本试题主要是考查了椭圆方程的求解和直线与椭圆的位置关系的运用。
(1)设椭圆的方程为
,由已知得
.
设右焦点为
,由题意得
得到结论。
(2)直线
的方程
, 代入椭圆方程,得
由
得
结合韦达定理和![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230739116736.png)
点
在线段
的中垂线上,得到k的值。
解:(Ⅰ)设椭圆的方程为
,由已知得
.
设右焦点为
,由题意得
……………………………2分
.
椭圆的方程为
. ……………………4分
(Ⅱ)直线
的方程
, 代入椭圆方程,得
由
得
…………………6分
设点
则
设
、
的中点为
,则点
的坐标为
. ………………8分
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230739116736.png)
点
在线段
的中垂线上.
化简,得
. ……………………………10分
所以,存在直线
满足题意,直线
的方程为
或
……………………………12分
(1)设椭圆的方程为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232307389131096.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230738945352.png)
设右焦点为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230738960433.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230738991843.png)
(2)直线
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230738742280.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230739038665.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232307390541047.png)
由
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230739085975.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230739101601.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230739116736.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230739132195.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230739147309.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230739179513.png)
解:(Ⅰ)设椭圆的方程为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232307389131096.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230738945352.png)
设右焦点为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230738960433.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230738991843.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230739397639.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230739132195.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230738851644.png)
(Ⅱ)直线
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230738742280.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230739038665.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232307390541047.png)
由
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230739085975.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230739101601.png)
设点
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232307396931002.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230739740807.png)
设
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230738773399.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230738804357.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230739818289.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230739818289.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230739865925.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230739116736.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230739132195.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230739147309.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230739179513.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232307399591253.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230739990556.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230740005974.png)
所以,存在直线
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230738742280.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230738742280.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230738867866.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230738898867.png)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目