题目内容

设数列{an}满足:a1=5,an+1+4an=5,(n∈N*
(I)是否存在实数t,使{an+t}是等比数列?
(Ⅱ)设数列bn=|an|,求{bn}的前2013项和S2013
(I)由an+1+4an=5,得an+1=-4an+5,
令an+1+t=-4(an+t),…(2分)
得an+1=-4an-5t,则-5t=5,∴t=-1…(4分)
∴an+1-1=-4(an-1),
又a1=5,∴a1-1=4,∴{an-1}是首项为4,公比为-4的等比数列,
∴存在这样的实数t=-1,使{an+t}是等比数列.…(6分)
(II)由(I)得an-1=4•(-4)n-1,∴an=1+4•(-4)n-1.…(7分)
∴bn=|an|=
1+4n,n为奇数
4n-1,n为偶数
…(8分)
∴S2013=b1+b2+…+bn=(1+4)+(42-1)+…+(1+42013)=4+42+…+42013+1=
4-42014
1-4
+1
=
42014-1
3
…(12分)
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网