题目内容

【题目】已知数列{an}的前n项和为Tn= n2 n,且an+2+3log4bn=0(n∈N*
(1)求{bn}的通项公式;
(2)数列{cn}满足cn=anbn , 求数列{cn}的前n项和Sn
(3)若cn m2+m﹣1对一切正整数n恒成立,求实数m的取值范围.

【答案】
(1)解:由Tn= n2 n,易得an=3n﹣2代入到an+2+3log4bn=0(n∈N*)根据对数的运算性质化简bn= (n∈N*),
(2)解:cn=anbn= ,∴

两式相减整理得


(3)解:cn=anbn=(3n﹣2) ∴cn+1﹣cn=(3n+1) ﹣(3n﹣2) =9(1﹣n) (n∈N*),

∴当n=1时,c2=c1=

当n≥2时,cn+1<cn,即c1=c2>c3>…>cn

∴当n=1时,cn取最大值是 ,又cn m2+m﹣1对一切正整数n恒成立∴ m2+m﹣1≥ ,即m2+4m﹣5≥0,

解得:m≥1或m≤﹣5.


【解析】(1)由Tn= n2 n,先求数列{an}的通项公式;代入到an+2+3log4bn=0(n∈N*)根据对数的运算性质化简即可求出{bn}的通项公式;(2)把第一问求出的两数列的通项公式代入cn=anbn中,确定出cn的通项公式,从而求数列{cn}的前n项和Sn;(3)表示出cn+1﹣cn , 判断得到其差小于0,故数列{cn}为递减数列,令n=1求出数列{cn}的最大值,然后原不等式的右边大于等于求出的最大值,列出关于m的一元二次不等式,求出不等式的解集即为实数m的取值范围.
【考点精析】解答此题的关键在于理解数列的前n项和的相关知识,掌握数列{an}的前n项和sn与通项an的关系

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网