题目内容
【题目】一缉私艇发现在方位角45°方向,距离12海里的海面上有一走私船正以10海里/小时的速度沿方位角为105°方向逃窜,若缉私艇的速度为14海里/小时,缉私艇沿方位角45°+α的方向追去,若要在最短的时间内追上该走私船,求追击所需时间和α角的正弦.(注:方位角是指正北方向按顺时针方向旋转形成的角,设缉私艇与走私船原来的位置分别为A、C,在B处两船相遇).
【答案】解:由条件知∠ACB=120°,AC=12海里,
设缉私船t小时后追上该走私船,可得BC=10t,AB=14t,
∴由正弦定理 = 得: = ,
∴sinα= ,
由余弦定理AB2=AC2+BC2﹣2ACBCcos∠ACB得:(14t)2=122+(10t)2﹣240tcos120°,
解得:t=2或t=﹣ (舍),
∴t=2小时,sinα= .
【解析】缉私艇与走私船原来的位置分别为A、C,在B处两船相遇,由条件得到∠ACB=120°,AC=12海里,设缉私船t小时后追上该走私船,根据各自的速度表示出BC与AB,由∠ACB=120°,∠CAB=α,利用正弦定理列出关系式,求出sinα的值;由余弦定理列出关于t的方程,求出方程的解即可得到t的值.
【考点精析】通过灵活运用正弦定理的定义,掌握正弦定理:即可以解答此题.
【题目】在一次爱心捐款活动中,小李为了了解捐款数额是否和居民自身的经济收入有关,随机调査了某地区的个捐款居民每月平均的经济收入. 在捐款超过元的居民中,每月平均的经济收入没有达到元的有个,达到元的有个;在捐款不超过元的居民中,每月平均的经济收入没有达到元的有个.
(1)在下图表格空白处填写正确数字,并说明是否有以上的把握认为捐款数额是否超过元和居民毎月平均的经济收入是否达到元有关?
(2)将上述调查所得到的频率视为概率. 现在从该地区大量居民中,采用随机抽样方法毎次抽取个居民,共抽取次,记被抽取的个居民中经济收入达到元的人数为,求和期望的值.
每月平均经济收入达到元 | 每月平均经济收入没有达到元 | 合计 | |
捐款超过元 | |||
捐款不超过元 | |||
合计 |
附: ,其中
【题目】某网站针对2015年中国好声音歌手A,B,C三人进行网上投票,结果如下
观众年龄 | 支持A | 支持B | 支持C |
20岁以下 | 100 | 200 | 600 |
20岁以上(含20岁) | 100 | 100 | 400 |
(1)在所有参与该活动的人中,用分层抽样的方法抽取n人,其中有6人支持A,求n的值.
(2)在支持C的人中,用分层抽样的方法抽取5人作为一个总体,从这5人中任意选取2人,求恰有1人在20岁以下的概率.