题目内容
(本小题满分14分)
设正整数数列{an}满足:a2=4,且对于任何
n∈N*,有.
(1)求a1,a3;
(2)求数列{ an }的通项an.
设正整数数列{an}满足:a2=4,且对于任何
n∈N*,有.
(1)求a1,a3;
(2)求数列{ an }的通项an.
(1),
(2)对任意,
(2)对任意,
解:(1)据条件得 ①
当时,由,即有,
解得.因为为正整数,故.
当时,由,
解得,所以.
(2)方法一:由,,,猜想:.
下面用数学归纳法证明.
1当,时,由(1)知均成立;
2假设成立,则,则时
由①得
因为时,,所以.
,所以.
又,所以.
故,即时,成立.
由1,2知,对任意,.
(2)方法二:
由,,,猜想:.
下面用数学归纳法证明.
1当,时,由(1)知均成立;
2假设成立,则,则时
由①得
即 ②
由②左式,得,即,因为两端为整数,
则.于是 ③
又由②右式,.
则.
因为两端为正整数,则,
所以.
又因时,为正整数,则 ④
据③④,即时,成立.
由1,2知,对任意,.
当时,由,即有,
解得.因为为正整数,故.
当时,由,
解得,所以.
(2)方法一:由,,,猜想:.
下面用数学归纳法证明.
1当,时,由(1)知均成立;
2假设成立,则,则时
由①得
因为时,,所以.
,所以.
又,所以.
故,即时,成立.
由1,2知,对任意,.
(2)方法二:
由,,,猜想:.
下面用数学归纳法证明.
1当,时,由(1)知均成立;
2假设成立,则,则时
由①得
即 ②
由②左式,得,即,因为两端为整数,
则.于是 ③
又由②右式,.
则.
因为两端为正整数,则,
所以.
又因时,为正整数,则 ④
据③④,即时,成立.
由1,2知,对任意,.
练习册系列答案
相关题目