题目内容

【题目】设有三点,其中点在椭圆上,,且.

(1)求椭圆的方程;

(2)若过椭圆的右焦点的直线倾斜角为,直线与椭圆相交于,求三角形的面积.

【答案】(1); (2).

【解析】

(1)先求得的值.设出点坐标,代入,化简后可求得点坐标,将点坐标代入椭圆方程,由此求得的值,并求出椭圆方程.(2)由(1)求得椭圆焦点的坐标,利用点斜式得到直线的方程,联立直线的方程和椭圆的方程,利用两点间距离公式求得的长度,利用点到直线的距离公式求得到直线的距离,由此求得三角形的面积.

(1)解:由题意知,

,∴

设椭圆方程②,将①代入②,

∴椭圆方程为

(2)

的方程代入,整理得

∴交点坐标为

的距离为

所以

所以三角形的面积为.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网