题目内容
【题目】(2016·沈阳期中)在直角梯形ABCD中,AB⊥AD,DC∥AB,AD=DC=1,AB=2,E、F分别为AB、BC的中点,点P在以A为圆心,AD为半径的圆弧上变动(如图所示).若=λ+μ,其中λ,μ∈R,则2λ-μ的取值范围是______________.
【答案】[-1,1]
【解析】建立如图所示的直角坐标系,设∠PAE=α,则
A(0,0),E(1,0),D(0,1),F(1.5,0.5),P(cosα,sin α)(0°≤α≤90°).
∵=λ+μ,
∴(cosα,sin α)=λ(-1,1)+μ(1.5,0.5),
∴cosα=-λ+1.5μ,sin α=λ+0.5μ,
∴λ= (3sin α-cosα),μ= (cosα+sin α),
∴2λ-μ=sin α-cosα=sin(α-45°).
∵0°≤α≤90°,∴-45°≤α-45°≤45°,
∴-≤sin(α-45°)≤,
∴-1≤sin(α-45°)≤1.
∴2λ-μ的取值范围是[-1,1].
练习册系列答案
相关题目