题目内容
7.在直角坐标平面内,以坐标原点O为极点,x轴的非负半轴为极轴建立极坐标系(单位长度相同).已知曲线C的极坐标方程为ρ=4cosθ,直线l的参数方程为$\left\{\begin{array}{l}{x=1+tcos\frac{π}{6}}\\{y=-\sqrt{3}+tsin\frac{π}{6}}\end{array}\right.$(t为参数).若点P在曲线C上,且P到直线l的距离为1,则满足这样条件的点P的个数为( )A. | 1 | B. | 2 | C. | 3 | D. | 4 |
分析 把极坐标方程化为直角坐标方程、参数方程化为普通方程,利用点到直线的距离公式求出圆心到直线的距离即可判断出结论.
解答 解:曲线C的极坐标方程为ρ=4cosθ,即ρ2=4ρcosθ,化为x2+y2=4x,化为(x-2)2+y2=4,可得圆心C(2,0),半径r=2.
直线l的参数方程为$\left\{\begin{array}{l}{x=1+tcos\frac{π}{6}}\\{y=-\sqrt{3}+tsin\frac{π}{6}}\end{array}\right.$(t为参数).化为$x-\sqrt{3}y$-4=0.
则圆心C到直线l的距离d=$\frac{|2-0-4|}{\sqrt{{1}^{2}+(-\sqrt{3})^{2}}}$=1.
∴若点P在曲线C上,且P到直线l的距离为1,则满足这样条件的点P的个数为3.
故选:C.
点评 本题考查了把极坐标方程化为直角坐标方程、参数方程化为普通方程、直线与圆的位置关系、点到直线的距离公式,考查了推理能力与计算能力,属于中档题.
练习册系列答案
相关题目
17.数列{an}的前n项和Sn=2n(n∈N*),则a12+a22+…+an2等于( )
A. | 4n | B. | $\frac{1}{3}({4^n}-1)$ | C. | $\frac{4}{3}({4^n}-1)$ | D. | $\frac{1}{3}({4^n}+8)$ |
15.椭圆$\frac{x^2}{{\frac{a^2}{2}}}$+$\frac{y^2}{a^2}$=1与连结A(1,2),B(2,3)的线段没有公共点,则正数a的取值范围是( )
A. | (0,$\sqrt{6}$)∪($\sqrt{17}$,∞) | B. | ($\sqrt{17}$,∞) | C. | [$\sqrt{6}$,$\sqrt{17}$] | D. | ($\sqrt{6}$,$\sqrt{17}$) |
2.已知全集U=R,函数f(x)=$\sqrt{{2}^{x}-{5}^{x}}$的定义域为M,则∁UM=( )
A. | (-∞,0] | B. | (0,+∞) | C. | (-∞,0) | D. | [0,+∞) |
12.某车间为了规定工时定额,需要确定加工零件所花费的时间,为此进行了5次试验,根据收集到的数据(如下表),由最小二乘法得回归直线方程$\stackrel{∧}{y}$=0.68x+54.6,表中有一个数据模糊不清,请你推断该数据的值为( )
零件个数x(个) | 10 | 20 | 30 | 40 | 50 |
加工时间y(min) | 62 | ● | 75 | 81 | 89 |
A. | 68 | B. | 68.2 | C. | 70 | D. | 75 |
16.若函数f(x)=sinωx+$\sqrt{3}$cosωx(ω>0)的最小正周期为π,则它的图象的一个对称中心为( )
A. | ($\frac{π}{2}$,0) | B. | ($\frac{π}{3}$,0) | C. | ($\frac{π}{6}$,0) | D. | ($\frac{π}{12}$,0) |