题目内容
点A、B分别是以双曲线![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000502401482.png)
的焦点为顶点,顶点为焦点的椭圆C长轴的左、右端点,点F是椭圆的右焦点,点P在椭圆C上,且位于x轴上方,
(1)求椭圆C的的方程;
(2)求点P的坐标;
(3)设M是椭圆长轴AB上的一点,点M到直线AP的距离等于|MB|,求椭圆上的点到M的距离d的最小值。
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000502401482.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000502417596.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000502432592.png)
(1)求椭圆C的的方程;
(2)求点P的坐标;
(3)设M是椭圆长轴AB上的一点,点M到直线AP的距离等于|MB|,求椭圆上的点到M的距离d的最小值。
(1)![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000502448554.png)
;(2)点P的坐标为
;
(3)当
时,d取最小值
。
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000502448554.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000502464578.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000502479824.png)
(3)当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000502510512.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000502526354.png)
试题分析:(I)求出双曲线
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000502401482.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000502417596.png)
(Ⅱ)点P的坐标为(x,y),由已知得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000502573546.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000502588577.png)
解方程组可得点P的坐标
(Ⅲ)设点M是(m,0)于是
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000502604603.png)
(1)已知双曲线实半轴a1=4,虚半轴b1=2
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000502620305.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000502620591.png)
∴椭圆的长半轴a2=c1=6,椭圆的半焦距c2=a1=4,椭圆的短半轴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000502635348.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000502807704.png)
∴所求的椭圆方程为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000502448554.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000502464578.png)
(2)由已知
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000502854563.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000502869546.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000502885522.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240005029001083.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240005029161484.png)
则
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000502932719.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000502947707.png)
由于y>0,所以只能取
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000502978495.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000503010639.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000502479824.png)
(3)直线
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000503041839.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000503056537.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000503072597.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000503088752.png)
又∵点M在椭圆的长轴上,即
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000503103518.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000503134450.png)
∴当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000503134435.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000503166619.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240005031812108.png)
又
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000503197470.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000502510512.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000502526354.png)
点评:解决该试题的关键是熟练的运用双曲线的性质来表示出椭圆的a,b,c,进而得到方程,同时联立方程组,结合韦达定理求点的坐标,进而分析最值。
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目