题目内容
【题目】某城市在进行规划时,准备设计一个圆形的开放式公园.为达到社会和经济效益双丰收.园林公司进行如下设计,安排圆内接四边形作为绿化区域,其余作为市民活动区域.其中区域种植花木后出售,区域种植草皮后出售,已知草皮每平方米售价为元,花木每平方米的售价是草皮每平方米售价的三倍. 若 km , km
(1)若 km ,求绿化区域的面积;
(2)设,当取何值时,园林公司的总销售金额最大.
【答案】(1)绿化区域的面积为 ;(2)当时,园林公司的销售金额最大,最大为百万元.
【解析】
(1)若 km,可得,进而求出,即可求绿化区域的面积(2)设,求出园林公司的总销售金额,利用导数可得结论.
(1)在中,,,,
由余弦定理得,
因为, 所以,
又因为、、、共圆,所以.
在中,由余弦定理得,
将,代入化简得,
解得(舍去).
所以
即绿化空间的面积为
(2)在、中分别利用余弦定理得
①
②
联立①②消去得,得
,解得(舍去).
因为,所以,即.
因为草皮每平方米售价为元,则花木每平方米售价为元,设销售金额为百万元.
令,解得,又,妨设,
则函数在上为增函数;
令,解得,则函数在上为减函数,
所以当时,.
答:(1)绿化区域的面积为 ;(2)当时,园林公司的销售金额最大,最大为百万元.
练习册系列答案
相关题目