ÌâÄ¿ÄÚÈÝ
3£®Ï±íÌṩÁËij³§Éú²ú¼×²úÆ·¹ý³ÌÖмǼµÄ²úÁ¿x£¨¶Ö£©ÓëÏàÓ¦µÄÉú²úÄܺÄy£¨¶Ö±ê׼ú£©µÄ¼¸×é¶ÔÕÕÊý¾Ý£®x | 3 | 4 | 5 | 6 |
y | 2.5 | 3 | 4 | 4.5 |
£¨2£©ÇëÇó³öÏà¹ØÖ¸ÊýR2£¬²¢ËµÃ÷²Ð²î±äÁ¿¶ÔÔ¤±¨±äÁ¿µÄÓ°ÏìÔ¼Õ¼°Ù·ÖÖ®¼¸£®
£¨²Î¿¼ÊýÖµ£º3¡Á2.5+4¡Á3+5¡Á4+6¡Á4.5=66.5£©
·ÖÎö £¨1£©Ê×ÏÈ×ö³öx£¬yµÄƽ¾ùÊý£¬ÀûÓÃ×îС¶þ³Ë·¨×ö³öÏßÐԻعéÖ±Ïߵķ½³ÌµÄϵÊý£¬Ð´³ö»Ø¹éÖ±Ïߵķ½³Ì£¬µÃµ½½á¹û£»
£¨2£©Ö±½Ó¸ù¾ÝÏà¹ØÖ¸Êý¹«Ê½Çó³öÏà¹ØÖ¸ÊýR2£¬½ø¶ø¿ÉµÃ²Ð²î±äÁ¿¶ÔÔ¤±¨±äÁ¿µÄÓ°ÏìÔ¼Õ¼°Ù·ÖÖ®¼¸£®
½â´ð ½â£º£¨1£©ÓÉÒÑÖª¿ÉµÃ£º
$\sum_{i=1}^4{{X_i}{Y_i}}=66.5$£¬$\sum_{i=1}^4{X_i^2}={3^2}+{4^2}+{5^2}+{6^2}=86$£¬
$\overline x=4.5$£¬$\overline y=3.5$£¬
$\hat b=\frac{66.5-4¡Á4.5¡Á3.5}{{86-4¡Á{{4.5}^2}}}=\frac{66.5-63}{86-81}=0.7$£¬
$\hat a=\overline y-\hat b\overline x=3.5-0.7¡Á4.5=0.35$
ËùÇóµÄ»Ø¹é·½³ÌΪ $\widehaty=0.7x+0.35$¡£¨7·Ö£©
£¨2£©¼ÆËãµÃ²Ð²î¼°Æ«²îµÄÊý¾ÝÈçÏÂ±í£º
${y_i}-\widehat{y_i}$ | 0.05 | -0.15 | 0.15 | -0.05 |
${y_i}-\overline y$ | -1 | -0.5 | 0.5 | 1 |
ËùÒÔ${R^2}=1-\frac{{\sum_{i=1}^n{{{£¨{y_i}-{{\hat y}_i}£©}^2}}}}{{\sum_{i=1}^n{{{£¨{y_i}-\bar y£©}^2}}}}=1-\frac{0.05}{2.5}=0.98$£®¡12·Ö
ËùÒԲвî±äÁ¿¶ÔÔ¤±¨±äÁ¿µÄ¹±Ï×ÂÊԼΪ2%£®¡£¨14·Ö£©
µãÆÀ ±¾Ì⿼²é»Ø¹éÖ±Ïß·½³Ì£¬Ïà¹ØÖ¸Êý£¬¿¼²é»Ø¹é·ÖÎöµÄ³õ²½Ó¦Óã®È·¶¨»Ø¹éÖ±Ïß·½³ÌÊǹؼü£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
8£®É輯ºÏM={0£¬1£¬2}£¬N={-1£¬0£¬1}£¬ÔòM¡ÉN=£¨¡¡¡¡£©
A£® | ¦µ | B£® | {0£¬1} | C£® | {0£¬1£¬2} | D£® | {-1£¬0£¬1£¬2} |
9£®Ä³°àÖ÷ÈζÔÈ«°à50ÃûѧÉúѧϰ»ý¼«ÐԺͶԴý°à¼¶¹¤×÷µÄ̬¶È½øÐÐÁ˵÷²é£¬Í³¼ÆÊý¾ÝÈçϱíËùʾ£º
ÆäÖУº¡°»ý¼«²Î¼Ó°à¼¶¹¤×÷ÇÒѧϰ»ý¼«ÐԸߵÄѧÉú¡±µÄƵÂÊΪ0.36£®
£¨1£©²¹È«±íÖÐÊý¾Ý£¬²¢Çó¡°²»Ì«Ö÷¶¯²Î¼Ó°à¼¶µÄѧÉú¡±µÄƵÂÊ£»
£¨2£©ÊÔÔËÓöÀÁ¢ÐÔ¼ìÑéµÄ˼Ïë·½·¨·ÖÎö£ºÄÜ·ñÔÚ·¸´íÎó¸ÅÂʲ»³¬¹ý0.001µÄÇ°ÌáÏÂÈÏΪ£¬Ñ§ÉúµÄѧϰ»ý¼«ÐÔÓë¶Ô´ý°à¼¶¹¤×÷µÄ̬¶ÈÓйØϵ£¿
²Î¿¼¹«Ê½£ºK2=$\frac{n£¨ad-bc£©^{2}}{£¨a+b£©£¨c+d£©£¨a+c£©£¨b+d£©}$£¬£¨ÆäÖÐn=a+b+c+d£©
ÁÙ½çÖµ±í£º
»ý¼«²Î¼Ó°à¼¶¹¤×÷ | ²»Ì«Ö÷¶¯²Î¼Ó°à¼¶¹¤×÷ | ºÏ¼Æ | |
ѧϰ»ý¼«ÐÔ¸ß | 25 | ||
ѧϰ»ý¼«ÐÔÒ»°ã | 25 | ||
ºÏ¼Æ | 24 | 26 | 50 |
£¨1£©²¹È«±íÖÐÊý¾Ý£¬²¢Çó¡°²»Ì«Ö÷¶¯²Î¼Ó°à¼¶µÄѧÉú¡±µÄƵÂÊ£»
£¨2£©ÊÔÔËÓöÀÁ¢ÐÔ¼ìÑéµÄ˼Ïë·½·¨·ÖÎö£ºÄÜ·ñÔÚ·¸´íÎó¸ÅÂʲ»³¬¹ý0.001µÄÇ°ÌáÏÂÈÏΪ£¬Ñ§ÉúµÄѧϰ»ý¼«ÐÔÓë¶Ô´ý°à¼¶¹¤×÷µÄ̬¶ÈÓйØϵ£¿
²Î¿¼¹«Ê½£ºK2=$\frac{n£¨ad-bc£©^{2}}{£¨a+b£©£¨c+d£©£¨a+c£©£¨b+d£©}$£¬£¨ÆäÖÐn=a+b+c+d£©
ÁÙ½çÖµ±í£º
P£¨K2¡ÝK0£© | 0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
K0 | 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.84 | 5.024 | 6.635 | 7.879 | 10.83 |
11£®Ó÷´Ö¤·¨Ö¤Ã÷ÃüÌâ¡°a£¬b¡ÊN£¬Èç¹ûab¿É±»5Õû³ý£¬ÄÇôa£¬bÖÁÉÙÓÐ1¸öÄܱ»5Õû³ý£®Ôò¼ÙÉèµÄÄÚÈÝÊÇ£¨¡¡¡¡£©
A£® | a£¬b¶¼Äܱ»5Õû³ý | B£® | a£¬bÓÐ1¸ö²»Äܱ»5Õû³ý | ||
C£® | a²»Äܱ»5Õû³ý | D£® | a£¬b¶¼²»Äܱ»5Õû³ý |
18£®ÒÑÖªÏòÁ¿$\overrightarrow a$=£¨2£¬-3£©£¬$\overrightarrow b$=£¨-5£¬8£©£¬Ôò£¨$\overrightarrow a$+$\overrightarrow b$£©•$\overrightarrow b$µÈÓÚ£¨¡¡¡¡£©
A£® | -34 | B£® | 34 | C£® | 55 | D£® | -55 |
15£®ÏÂÁÐÏòÁ¿µÄÔËËãÖУ¬ÕýÈ·µÄÊÇ£¨¡¡¡¡£©
A£® | $\overrightarrow{AB}+\overrightarrow{BA}=2\overrightarrow{AB}$ | B£® | $\overrightarrow{AB}+\overrightarrow{BC}=\overrightarrow{CA}$ | C£® | $\overrightarrow{AB}-\overrightarrow{AC}=\overrightarrow{CB}$ | D£® | $\overrightarrow{AB}-\overrightarrow{AD}-\overrightarrow{DC}=\overrightarrow{BC}$ |