题目内容
9.以下各点坐标与点$M(-5,\frac{π}{3})$不同的是( )A. | (5,-$\frac{π}{3}$) | B. | $(5,\frac{4π}{3})$ | C. | $(5,-\frac{2π}{3})$ | D. | $(-5,-\frac{5π}{3})$ |
分析 利用排除法,结合终边相同的角,从而得出正确选项.
解答 解:点M的极坐标为(-5,$\frac{π}{3}$),由于$\frac{π}{3}$和-$\frac{5π}{3}$是终边相同的角,故点M的坐标也可表示为(-5,-$\frac{5π}{3}$),排除D;
再根据$\frac{π}{3}$和$\frac{4π}{3}$或$\frac{2π}{3}$是终边在反向延长线的角,故点M的坐标也可表示为(5,$\frac{4π}{3}$),(5,-$\frac{2π}{3}$),排除B,C.
故选:A.
点评 本题考查点的极坐标、终边相同的角的表示方法,是一道基础题.
练习册系列答案
相关题目
20.已知A(-1,0),B(5,6),C(3,4),则$\frac{{|{CB}|}}{{|{AC}|}}$=( )
A. | $\frac{1}{3}$ | B. | $\frac{1}{2}$ | C. | 3 | D. | 2 |
14.某青年教师专项课题进行“学生数学成绩与物理成绩的关系”的课题研究,对于高二年级800名学生上学期期末数学和物理成绩,按优秀和不优秀分类得结果:数学和物理都优秀的有60人,数学成绩优秀但物理不优秀的有140人,物理成绩优秀但数学不优秀的有100人.
(1)能否在犯错概率不超过0.001的前提下认为该校学生的数学成绩与物理成绩有关系?
(2)将上述调查所得到的频率视为概率,从全体高二年级学生成绩中,有放回地随机抽取3名学生的成绩,记抽取的3个成绩中数学、物理两科成绩至少有一科优秀的次数为X,求X的期望E(X).
附:
(1)能否在犯错概率不超过0.001的前提下认为该校学生的数学成绩与物理成绩有关系?
(2)将上述调查所得到的频率视为概率,从全体高二年级学生成绩中,有放回地随机抽取3名学生的成绩,记抽取的3个成绩中数学、物理两科成绩至少有一科优秀的次数为X,求X的期望E(X).
附:
K2=$\frac{n(ad-bc)2}{(a+b)(c+d)(a+c)(b+d)}$ | P(K2≥k0) | 0.010 | 0.005 | 0.001 |
k0 | 6.635 | 7.879 | 10.828 |
1.在△ABC中,a=4,b=7,sinB=$\frac{1}{4}$,则sinA=( )
A. | $\frac{1}{7}$ | B. | $\frac{7}{16}$ | C. | $\frac{7}{8}$ | D. | $\frac{4}{7}$ |
19.对具有线性相关关系的变量x,y有一组观测数据(xi,yi)(i=1,2,…8),其回归直线方程是$\hat y=\frac{1}{3}$x+a,且x1+x2+x3+…+x8=2(y1+y2+y3+…+y8)=6,则实数a的值是( )
A. | $\frac{1}{16}$ | B. | $\frac{1}{8}$ | C. | $\frac{1}{4}$ | D. | $\frac{1}{2}$ |