题目内容
4.双曲线$\frac{x^2}{25}-\frac{y^2}{9}$=1的右焦点坐标为$(\sqrt{34},0)$.分析 根据双曲线的方程和性质即可得到结论.
解答 解:由双曲线的方程可知,a2=25,b2=9,
则c2=a2+b2=34,即c=$\sqrt{34}$,
故双曲线的右焦点的坐标为$(\sqrt{34},0)$.
故答案为:$(\sqrt{34},0)$.
点评 本题主要考查双曲线的性质和方程,利用a,b,c之间的关系是解决本题的关键.
练习册系列答案
相关题目
14.已知椭圆C:$\frac{{x}^{2}}{3}$+$\frac{{y}^{2}}{2}$=1,点A(a,b)为椭圆C上的动点,则m=|$\frac{3-a}{b}$|的最小值为( )
A. | $\sqrt{3}$ | B. | $\frac{\sqrt{2}}{2}$ | C. | $\frac{\sqrt{3}}{2}$ | D. | $\frac{3}{2}$$\sqrt{3}$ |
12.若复数z=$\frac{{i}^{2015}}{1-i}$(其中i是虚数单位),则复数z在复平面内对应的点位于( )
A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
9.以下各点坐标与点$M(-5,\frac{π}{3})$不同的是( )
A. | (5,-$\frac{π}{3}$) | B. | $(5,\frac{4π}{3})$ | C. | $(5,-\frac{2π}{3})$ | D. | $(-5,-\frac{5π}{3})$ |
16.电视传媒公司为了解某地区观众对某体育节目的收视情况,随机抽取了100名观众进行调查,其中女性有55名,下面是根据调查结果绘制的观众日均收看该体育节目时间的频率分布直方图:将日均收看该体育节目时间不低于40分钟的观众称为“体育迷”.
(1)根据已知条件完成下面的2×2列联表,并据此资料你是否认为“体育迷”与性别有关?
(2)将上述调查所得到的频率视为概率.现在从该地区大量电视观众中,采用随机抽样方法每次抽取1名观众,抽取3次,记被抽取的3名观众中的“体育迷”人数为X.若每次抽取的结果是相互独立的,求X的分布列,期望E(X)和方差D(X).
附:K2=$\frac{n(ad-bc)2}{(a+b)(c+d)(a+c)(b+d)}$.
(1)根据已知条件完成下面的2×2列联表,并据此资料你是否认为“体育迷”与性别有关?
非体育迷 | 体育迷 | 合计 | |
男 | |||
女 | 10 | 55 | |
合计 |
P(K2≥k) | 0.05 | 0.01 |
k | 3.841 | 6.635 |