题目内容
【题目】在直角坐标系xOy中,以原点O为极点,x轴的正半轴为极轴建立极坐标系,已知直线l的参数方程为:,为参数点的极坐标为,曲线C的极坐标方程为.
Ⅰ试将曲线C的极坐标方程化为直角坐标方程,并求曲线C的焦点在直角坐标系下的坐标;
Ⅱ设直线l与曲线C相交于两点A,B,点M为AB的中点,求的值.
【答案】(Ⅰ)曲线C的直角坐标方程为,焦点坐标为;(Ⅱ).
【解析】
Ⅰ把,代入曲线C的方程,可得曲线C的直角坐标方程.Ⅱ设点A,B,M对应的参数为,,,由题意可知把直线l的参数方程代入抛物线的直角坐标方程,利用韦达定理求得的值,可得的值.
解:Ⅰ把,代入,可得曲线C的直角坐标方程为,
它是开口向上的抛物线,焦点坐标为.
Ⅱ点P的直角坐标为,它在直线l上,在直线l的参数方程中,
设点A,B,M对应的参数为,,,由题意可知.
把直线l的参数方程代入抛物线的直角坐标方程,得.
因为,
所以.
【题目】某商场营销人员进行某商品市场营销调查发现,每回馈消费者一定的点数,该商品当天的销量就会发生一定的变化,经过试点统计得到以下表:
反馈点数 | 1 | 2 | 3 | 4 | 5 |
销量(百件)/天 | 0.5 | 0.6 | 1 | 1.4 | 1.7 |
(1)经分析发现,可用线性回归模型拟合当地该商品一天销量(百件)与该天返还点数之间的相关关系.请用最小二乘法求关于的线性回归方程,并预测若返回6个点时该商品当天销量;
(2)若节日期间营销部对商品进行新一轮调整.已知某地拟购买该商品的消费群体十分庞大,经过营销部调研机构对其中的200名消费者的返点数额的心理预期值进行了一个抽样调查,得到如下一份频数表:
返还点数预期值区间(百分比) | ||||||
频数 | 20 | 60 | 60 | 30 | 20 | 10 |
将对返还点数的心理预期值在和的消费者分别定义为“欲望紧缩型”消费者和“欲望膨胀型”消费者,现采用分层抽样的方法从位于这两个区间的30名消费者中随机抽取6名,再从这6人中随机抽取3名进行跟踪调查,求抽出的3人中至少有1名“欲望膨胀型”消费者的概率.(参考公式及数据:①回归方程,其中,;②.)