题目内容
【题目】在△ABC中,a=3,,B=2A.
(Ⅰ)求cosA的值;
(Ⅱ)试比较∠B与∠C的大小.
【答案】(Ⅰ);(Ⅱ)∠B<∠C
【解析】
(Ⅰ)由已知利用正弦定理,二倍角的正弦函数公式即可求得cosA的值.(Ⅱ)利用同角三角函数基本关系式可求sinA,利用二倍角公式可求cosB,进而可求sinB的值,根据三角形内角和定理,两角和的余弦函数公式可求cosC的值,由于cosB>cosC,根据余弦函数的图象和性质可求∠B<∠C.
(Ⅰ)∵a=3,,B=2A.
∴由正弦定理可得:,
∴cosA;
(Ⅱ)∵A∈(0,π),可得:sinA,∵B=2A,
∴cosB=cos2A=2cos2A﹣1,∴sinB,
∵A+B+C=π,∴cosC=﹣cos(A+B)=sinAsinB﹣cosAcosB,∴cosB>cosC,
又∵函数y=cosx在(0,π)上单调递减,且B,C∈(0,π),∴∠B<∠C
【题目】为了让税收政策更好的为社会发展服务,国家在修订《中华人民共和国个人所得税法》之后,发布了《个人所得税专项附加扣除暂行办法》,明确“专项附加扣除”就是子女教育、继续教育大病医疗、住房贷款利息、住房租金赠养老人等费用,并公布了相应的定额扣除标准,决定自2019年1月1日起施行,某机关为了调查内部职员对新个税方案的满意程度与年龄的关系,通过问卷调查,整理数据得如下2×2列联表:
40岁及以下 | 40岁以上 | 合计 | |
基本满意 | 15 | 30 | 45 |
很满意 | 25 | 10 | 35 |
合计 | 40 | 40 | 80 |
(1)根据列联表,能否有99%的把握认为满意程度与年龄有关?
(2)为了帮助年龄在40岁以下的未购房的8名员工解决实际困难,该企业拟员工贡献积分(单位:分)给予相应的住房补贴(单位:元),现有两种补贴方案,方案甲:;方案乙:.已知这8名员工的贡献积分为2分,3分,6分,7分,7分,11分,12分,12分,将采用方案甲比采用方案乙获得更多补贴的员工记为“类员工”.为了解员工对补贴方案的认可度,现从这8名员工中随机抽取4名进行面谈,求恰好抽到3名“类员工”的概率。
附:,其中.
参考数据:
0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | |
0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 |