题目内容

【题目】某商场营销人员进行某商品市场营销调查发现,每回馈消费者一定的点数,该商品当天的销量就会发生一定的变化,经过试点统计得到以下表:

反馈点数

1

2

3

4

5

销量(百件)/天

0.5

0.6

1

1.4

1.7

(1)经分析发现,可用线性回归模型拟合当地该商品一天销量(百件)与该天返还点数之间的相关关系.请用最小二乘法求关于的线性回归方程,并预测若返回6个点时该商品当天销量;

(2)若节日期间营销部对商品进行新一轮调整.已知某地拟购买该商品的消费群体十分庞大,经过营销部调研机构对其中的200名消费者的返点数额的心理预期值进行了一个抽样调查,得到如下一份频数表:

返还点数预期值区间(百分比)

频数

20

60

60

30

20

10

将对返还点数的心理预期值在的消费者分别定义为“欲望紧缩型”消费者和“欲望膨胀型”消费者,现采用分层抽样的方法从位于这两个区间的30名消费者中随机抽取6名,再从这6人中随机抽取3名进行跟踪调查,求抽出的3人中至少有1名“欲望膨胀型”消费者的概率.(参考公式及数据:①回归方程,其中;②.)

【答案】(1),返回6个点时该商品每天销量约为2百件;(2)(i),中位数的估计值为,(ii)见解析

【解析】

(1)求出变量的平均数,求出最小二乘法所需要的数据,可得线性回归方程的系数,再根据样本中心点一定在线性回归方程上,求出的值,写出线性回归方程; 代入线性回归方程求出对应的的值,即可预测返回6个点时该商品每天销量;(2)利用分层抽样方法求得欲望膨胀型消费者与欲望紧缩型消费者中抽取的人数,利用列举法得到所有的抽样情况共20种,其中至少有1欲望膨胀型消费者的情况有16种,利用古典概型概率公式可得结果.

(1)易知

则y关于x的线性回归方程为

时,,即返回6个点时该商品每天销量约为2百件.

(2)设从“欲望膨胀型”消费者中抽取人,从“欲望紧缩型”消费者中抽取人,

由分层抽样的定义可知,解得

在抽取的6人中,2名“欲望膨胀型”消费者分别记为,4名“欲望紧缩型”消费者分别记为,则所有的抽样情况如下:

共20种,其中至少有1名“欲望膨胀型”消费者的情况有16种,记事件A为“抽出的3人中至少有1名‘欲望膨胀型’消费者”,则.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网