题目内容
(本小题满分14分)
已知点(1,
)是函数
且
)的图象上一点,等比数列
的前
项和为
,数列![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005332680475.png)
的首项为
,且前
项和
满足
(
).
(1)求数列
和
的通项公式;
(2)若数列{
前
项和为
,问
>
的最小正整数
是多少?
已知点(1,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005332571325.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005332586730.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005332602377.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005332617457.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005332633297.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005332649524.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005332680475.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005332695556.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005332711249.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005332633297.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005332727388.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005332742728.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005332758435.png)
(1)求数列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005332617457.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005332680475.png)
(2)若数列{
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005332836590.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005332633297.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005332883373.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005332883373.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005332914537.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005332633297.png)
(1)
,
(2) 112
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240053329291189.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005332945601.png)
(2) 112
试题分析:(1)依题意
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005332961673.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005332976931.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005333007787.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005333007955.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005333023438.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240053330391239.png)
又数列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005333054481.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240053330701306.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005333085304.png)
又公比
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005333101660.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240053329291189.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005333132523.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240053331481998.png)
又
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005333163489.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005333179561.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005333195651.png)
数列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005333195632.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005333226851.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005333241537.png)
当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005332758435.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240053332571037.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005333273357.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005333288388.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005332945601.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005333132523.png)
(2)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240053333351164.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240053333662376.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240053333821004.png)
由
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005333397938.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005333413588.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005333429721.png)
点评:根据已知的数列的求和与其通项公式的关系式来求解数列的通项公式,并能结合裂项法求和,属于基础题。
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目