题目内容

5.已知函数f(x)=x+$\frac{a}{x}$+1的值域为(-∞,-1]∪[3,+∞),则a2008=(  )
A.$\frac{1}{2}$B.1C.$\frac{3}{2}$D.2

分析 对a分类分析,可知当a>0时,函数f(x)=x+$\frac{a}{x}$+1的值域符合题意,求出其值域,结合f(x)=x+$\frac{a}{x}$+1的值域为(-∞,-1]∪[3,+∞)列关于a的方程组求a,则答案可求.

解答 解:若a=0,f(x)=x+$\frac{a}{x}$+1=x+1,不满足值域为(-∞,-1]∪[3,+∞);
若a<0,f(x)=x+$\frac{a}{x}$+1在(-∞,0),(0,+∞)上为增函数,函数f(x)=x+$\frac{a}{x}$+1的值域为(-∞,+∞),不满足题意;
若a>0,则当x>0时,f(x)=x+$\frac{a}{x}$+1$≥2\sqrt{x•\frac{a}{x}}+1=2\sqrt{a}+1$,当且仅当x=$\sqrt{a}$时取“=”;
当x<0时,f(x)=x+$\frac{a}{x}$+1≤-2$\sqrt{(-x)•\frac{a}{-x}}+1=-2\sqrt{a}+1$,当且仅当x=-$\sqrt{a}$时取“=”.
由$\left\{\begin{array}{l}{2\sqrt{a}+1=3}\\{-2\sqrt{a}+1=-1}\end{array}\right.$,解得a=1.
∴a2008=12008=1.
故选:B.

点评 本题考查函数值域的求法,训练了利用基本不等式求最值,体现了分类讨论的数学思想方法,是基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网