题目内容

【题目】r是方程f(x)=0的根,选取x0作为r的初始近似值,过点(x0,f(x0))做曲线y=f(x)的切线ll的方程为y=f(x0)+(x-x0),求出lx轴交点的横坐标x1=x0,称x1r的一次近似值。过点(x1,f(x1))做曲线y=f(x)的切线,并求该切线与x轴交点的横坐标x2=x1,称x2r的二次近似值。重复以上过程,得r的近似值序列,其中,,称为rn+1次近似值,上式称为牛顿迭代公式。已知是方程-6=0的一个根,若取x0=2作为r的初始近似值,则在保留四位小数的前提下,

A. 2.4494 B. 2.4495 C. 2.4496 D. 2.4497

【答案】B

【解析】,,点处的切线方程为:,解得:

.

故选:B.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网