题目内容

【题目】已知a、b、c三个实数成等差数列,则直线bx+ay+c=0与抛物线 的相交弦中点的轨迹方程是

【答案】x+1=﹣(2y﹣1)2(y≠1)
【解析】解:设直线bx+ay+c=0与抛物线 的交点坐标为A(﹣2y12 , y1),B(﹣2y22 , y2), 把x=﹣2y2代入直线方程bx+ay+c=0得:﹣2by2+ay+c=0,
∴y1y2= ,y1+y2=
∵a,b,c成等差数列,∴c=2b﹣a,
∴y1y2= = ﹣1,
设AB的中点为P(x,y),则x=﹣y12﹣y22=﹣(y1+y22+2y1y2=﹣ + ﹣2,
y= =
∴x=﹣4y2+4y﹣2,即x+1=﹣(2y﹣1)2
由△=a2+8bc=a2+8b(2b﹣a)=a2﹣8ab+16b2=(a﹣4b)2>0得a≠4b,
∴y≠1.
所以答案是:x+1=﹣(2y﹣1)2(y≠1).

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网