题目内容
【题目】(1)椭圆C:+=1(a>b>0)与x轴交于A、B两点,点P是椭圆C上异于A、B的任意一点,直线PA、PB分别与y轴交于点M、N,求证:为定值b2﹣a2.
(2)由(1)类比可得如下真命题:双曲线C:=1(a>0,b>0)与x轴交于A、B两点,点P是双曲线C上异于A、B的任意一点,直线PA、PB分别与y轴交于点M、N,则为定值.请写出这个定值(不要求给出解题过程).
【答案】(1);(2)
【解析】
(1)设点P(x0,y0),x0≠±a,依题意,得A(﹣a,0),B(a,0),从而得直线PA的方程,继而求得点M,N的纵坐标,得到yMyN=,把点P(x0,y0),代入椭圆方程可求得yMyN==b2,从而得=b2﹣a2.
(2)类比(1)的结论,可得的值.
(1)证明:设点P(x0,y0),x0≠±a,
依题意,得A(﹣a,0),B(a,0),
∴直线PA的方程为y=(x+a)
令x=0,得yM=
同理得yN=
∴yMyN=,
∵点P(x0,y0)是椭圆C上一点,
∴=1,=(a2﹣),
∴yMyN==b2,
=(a,yN),=(﹣a,yM),
∴=﹣a2+yMyN=b2﹣a2
(2)﹣(a2+b2)
练习册系列答案
相关题目
【题目】在某次试验中,两个试验数据x,y的统计结果如下面的表格1所示.
x | 1 | 2 | 3 | 4 | 5 |
y | 2 | 3 | 4 | 4 | 5 |
表格1
(1)在给出的坐标系中画出数据x,y的散点图.
(2)补全表格2,根据表格2中的数据和公式求下列问题.
①求出y关于x的回归直线方程中的.
②估计当x=10时,的值是多少?
表格2
序号 | x | y | x2 | xy |
1 | 1 | 2 | 1 | 2 |
2 | 2 | 3 | 4 | 6 |
3 | 3 | 4 | 9 | 12 |
4 | 4 | 4 | 16 | 16 |
5 | 5 | 5 | 25 | 25 |
∑ |