题目内容

【题目】已知曲线C1在平面直角坐标系中的参数方程为 (t为参数),以坐标原点O为极点,x轴的非负半轴为极轴建立极坐标系,有曲线C2:ρ=2cosθ﹣4sinθ
(1)将C1的方程化为普通方程,并求出C2的平面直角坐标方程
(2)求曲线C1和C2两交点之间的距离.

【答案】
(1)解:曲线C1在平面直角坐标系中的参数方程为 (t为参数),消去参数t可得普通方程:y=2x﹣1.

由曲线C2:ρ=2cosθ﹣4sinθ,即ρ2=ρ(2cosθ﹣4sinθ),可得直角坐标方程:x2+y2=2x﹣4y


(2)解:x2+y2=2x﹣4y.化为(x﹣1)2+(y+2)2=5.可得圆心C2(1,﹣2),半径r=

∴曲线C1和C2两交点之间的距离=2 =


【解析】(1)曲线C1在平面直角坐标系中的参数方程为 (t为参数),消去参数t可得普通方程.由曲线C2:ρ=2cosθ﹣4sinθ,即ρ2=ρ(2cosθ﹣4sinθ),利用互化公式可得直角坐标方程.(2)x2+y2=2x﹣4y.化为(x﹣1)2+(y+2)2=5.可得圆心C2(1,﹣2),半径r= .求出圆心到直线的距离d,可得曲线C1和C2两交点之间的距离=2

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网