题目内容

【题目】如图,在三棱台DEF﹣ABC中,AB=2DE,G,H分别为AC,BC的中点.
(Ⅰ)求证:BD∥平面FGH;
(Ⅱ)若CF⊥平面ABC,AB⊥BC,CF=DE,∠BAC=45°,求平面FGH与平面ACFD所成的角(锐角)的大小.

【答案】解:(Ⅰ)证明:根据已知条件,DF∥AC,EF∥BC,DE∥AB; △DEF∽△ABC,又AB=2DE,
∴BC=2EF=2BH,
∴四边形EFHB为平行四边形;
∴BE∥HF,HF平面FGH,BE平面FGH;
∴BE∥平面FGH;
同样,因为GH为△ABC中位线,∴GH∥AB;
又DE∥AB;
∴DE∥GH;
∴DE∥平面FGH,DE∩BE=E;
∴平面BDE∥平面FGH,BD平面BDE;
∴BD∥平面FGH;
(Ⅱ)连接HE,则HE∥CF;
∵CF⊥平面ABC;
∴HE⊥平面ABC,并且HG⊥HC;
∴HC,HG,HE三直线两两垂直,分别以这三直线为x,y,z轴,建立如图所示空间直角坐标系,设HC=1,则:

H(0,0,0),G(0,1,0),F(1,0,1),B(﹣1,0,0);
连接BG,根据已知条件BA=BC,G为AC中点;
∴BG⊥AC;
又CF⊥平面ABC,BG平面ABC;
∴BG⊥CF,AC∩CF=C;
∴BG⊥平面ACFD;
∴向量 为平面ACFD的法向量;
设平面FGH的法向量为 ,则:
,取z=1,则:
设平面FGH和平面ACFD所成的锐二面角为θ,则:cosθ=|cos |=
∴平面FGH与平面ACFD所成的角为60°
【解析】(Ⅰ)根据AB=2DE便可得到BC=2EF,从而可以得出四边形EFHB为平行四边形,从而得到BE∥HF,便有BE∥平面FGH,再证明DE∥平面FGH,从而得到平面BDE∥平面FGH,从而BD∥平面FGH;(Ⅱ)连接HE,根据条件能够说明HC,HG,HE三直线两两垂直,从而分别以这三直线为x,y,z轴,建立空间直角坐标系,然后求出一些点的坐标.连接BG,可说明 为平面ACFD的一条法向量,设平面FGH的法向量为 ,根据 即可求出法向量 ,设平面FGH与平面ACFD所成的角为θ,根据cosθ= 即可求出平面FGH与平面ACFD所成的角的大小.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网