题目内容
【题目】设椭圆的左焦点为,离心率为,为圆的圆心.
(1)求椭圆的方程;
(2)已知过椭圆右焦点的直线交椭圆于两点,过且与垂直的直线与圆交于两点,求四边形面积的取值范围.
【答案】(1);(2)
【解析】试题分析:(Ⅰ)由题意求得a,b的值即可确定椭圆方程;
(Ⅱ)分类讨论,设直线l代入椭圆方程,运用韦达定理和弦长公式,可得|AB|,根据点到直线的距离公式可求出|CD|,再由四边形的面积公式,化简整理,运用不等式的性质,即可得到所求范围
试题解析:
(1)由题意知,则,
圆的标准方程为,从而椭圆的左焦点为,即,
所以,又,得.
所以椭圆的方程为:.
(2)可知椭圆右焦点.
(ⅰ)当l与x轴垂直时,此时不存在,直线l:,直线,
可得:,,四边形面积为12.
(ⅱ)当l与x轴平行时,此时,直线,直线,
可得:,,四边形面积为.
(iii)当l与x轴不垂直时,设l的方程为 ,并设,.
由得.
显然,且, .
所以.
过且与l垂直的直线,则圆心到的距离为,
所以.
故四边形面积:.
可得当l与x轴不垂直时,四边形面积的取值范围为(12,).
综上,四边形面积的取值范围为.
【题目】某地4个蔬菜大棚顶部,阳光照在一棵棵茁壮生长的蔬菜上,这些采用水培、无土栽培方式种植的各类蔬菜,成为该地区居民争相购买的对象,过去50周的资料显示,该地周光照量(小时)都在30以上,其中不足50的周数大约5周,不低于50且不超过70的周数大约有35周,超过70的大约有10周,根据统计某种改良黄瓜每个蔬菜大棚增加量(百斤)与每个蔬菜大棚使用农夫1号液体肥料(千克)之间对应数据为如图所示的折线图.
(1)依据数据的折线图,用最小二乘法求出关于的线性回归方程;并根据所求线性回归方程,估计如果每个蔬菜大棚使用农夫1号肥料10千克,则这种改良黄瓜每个蔬菜大鹏增加量是多少斤?
(2)因蔬菜大棚对光照要求较大,某光照控制仪商家为应对恶劣天气对光照的影响,为该基地提供了部分光照控制仪,该商家希望安装的光照控制仪尽可能运行,但每周光照控制仪最多可运行台数受周光照量限制,并有如下关系:
周光照量(单位:小时) | 30<X<50 | ||
光照控制仪最多可运行台数 | 3 | 2 | 1 |
若某台光照控制仪运行,则该台光照仪周利润为4000元;若某台光照仪未运行,则该台光照仪周亏损500元,欲使商家周总利润的均值达到最大,应安装光照控制仪多少台?
附:回归方程系数公式: , .