题目内容
【题目】在直角坐标系中,曲线上的任意一点到直线的距离比点到点的距离小1.
(1)求动点的轨迹的方程;
(2)若点是圆上一动点,过点作曲线的两条切线,切点分别为,求直线斜率的取值范围.
【答案】(1);(2)
【解析】
(1)设,根据题意可得点的轨迹方程满足的等式,化简即可求得动点的轨迹的方程;
(2)设出切线的斜率分别为,切点,,点,则可得过点的拋物线的切线方程为,联立抛物线方程并化简,由相切时可得两条切线斜率关系;由抛物线方程求得导函数,并由导数的几何意义并代入抛物线方程表示出,可求得,结合点满足的方程可得的取值范围,即可求得的范围.
(1)设点,
∵点到直线的距离等于,
∴,化简得,
∴动点的轨迹的方程为.
(2)由题意可知,的斜率都存在,分别设为,切点,,
设点,过点的拋物线的切线方程为,
联立,化简可得,
∴,即,
∴,.
由,求得导函数,
∴,,,
∴,
因为点满足,
由圆的性质可得,
∴,即直线斜率的取值范围为.
练习册系列答案
相关题目