题目内容
【题目】如图,菱形ABCD的边长为a,∠D=60°,点H为DC边中点,现以线段AH为折痕将△DAH折起使得点D到达点P的位置且平面PHA⊥平面ABCH,点E,F分别为AB,AP的中点.
(1)求证:平面PBC∥平面EFH;
(2)若三棱锥P﹣EFH的体积等于,求a的值.
【答案】(1)见解析;(2)a=2
【解析】
(1)分别证明EH∥平面PBC和EF∥平面PBC,再由EF∩EH=E,即可证明结论;
(2)根据条件求出AH,DH=PH=CH,然后证明PH⊥平面ABCH,又点F为AP的中点,则S△PEF=S△AEF,故VH-PEF=VH-AEF,则,据此计算求解即可.
(1)证明:菱形ABCD中,∵E,H分别为AB,CD的中点,∴BE∥CH,BE=CH,
∴四边形BCHE为平行四边形,则BC∥EH,又EH平面PBC,∴EH∥平面PBC,
又点E,F分别为AB,AP的中点,则EF∥BP,又EF平面PBC,∴EF∥平面PBC,
由EF∩EH=E,∴平面EFH∥平面PBC;
(2)在菱形ABCD中,∠D=60°,则△ACD为正三角形,
∴AH⊥CD,AH,DH=PH=CH,
折叠后,PH⊥AH,又平面PHA⊥平面ABCH,平面PHA∩平面ABCH=AH,从而PH⊥平面ABCH.
在△PAE中,点F为AP的中点,则S△PEF=S△AEF,∴VH-PEF=VH-AEF,
而VH-PEF+VH-AEF=VH-PAE,
∴
,
∴a3=8,即a=2.故a=2.
【题目】第7届世界军人运动会于2019年10月18日至27日在湖北武汉举行,赛期10天,共设置射击、游泳、田径、篮球等27个大项,329个小项.共有来自100多个国家的近万名现役军人同台竞技.前期为迎接军运会顺利召开,武汉市很多单位和部门都开展了丰富多彩的宣传和教育活动,努力让大家更多的了解军运会的相关知识,并倡议大家做文明公民.武汉市体育局为了解广大民众对军运会知识的知晓情况,在全市开展了网上问卷调查,民众参与度极高,现从大批参与者中随机抽取200名幸运参与者,他们得分(满分100分)数据,统计结果如下:
组别 | |||||||
频数 | 5 | 30 | 40 | 50 | 45 | 20 | 10 |
(1)若此次问卷调查得分整体服从正态分布,用样本来估计总体,设,分别为这200人得分的平均值和标准差(同一组数据用该区间中点值作为代表),求,的值(,的值四舍五入取整数),并计算;
(2)在(1)的条件下,为感谢大家参与这次活动,市体育局还对参加问卷调查的幸运市民制定如下奖励方案:得分低于的可以获得1次抽奖机会,得分不低于的可获得2次抽奖机会,在一次抽奖中,抽中价值为15元的纪念品A的概率为,抽中价值为30元的纪念品B的概率为.现有市民张先生参加了此次问卷调查并成为幸运参与者,记Y为他参加活动获得纪念品的总价值,求Y的分布列和数学期望,并估算此次纪念品所需要的总金额.
(参考数据:;;.)