题目内容

【题目】如图,菱形ABCD的边长为a,∠D60°,点HDC边中点,现以线段AH为折痕将DAH折起使得点D到达点P的位置且平面PHA⊥平面ABCH,点EF分别为ABAP的中点.

1)求证:平面PBC∥平面EFH

2)若三棱锥PEFH的体积等于,求a的值.

【答案】1)见解析;(2a2

【解析】

1)分别证明EH∥平面PBCEF∥平面PBC,再由EFEHE,即可证明结论;

2)根据条件求出AHDHPHCH,然后证明PH⊥平面ABCH,又点FAP的中点,则SPEFSAEF,故VHPEFVHAEF,则,据此计算求解即可.

1)证明:菱形ABCD中,∵EH分别为ABCD的中点,∴BECHBECH

∴四边形BCHE为平行四边形,则BCEH,又EH平面PBC,∴EH∥平面PBC

又点EF分别为ABAP的中点,则EFBP,又EF平面PBC,∴EF∥平面PBC

EFEHE,∴平面EFH∥平面PBC

2)在菱形ABCD中,∠D60°,则ACD为正三角形,

AHCDAHDHPHCH

折叠后,PHAH,又平面PHA⊥平面ABCH,平面PHA平面ABCHAH,从而PH⊥平面ABCH

在△PAE中,点FAP的中点,则SPEFSAEF,∴VHPEFVHAEF

VHPEF+VHAEFVHPAE

a38,即a2.故a2

练习册系列答案
相关题目

【题目】7届世界军人运动会于20191018日至27日在湖北武汉举行,赛期10天,共设置射击、游泳、田径、篮球等27个大项,329个小项.共有来自100多个国家的近万名现役军人同台竞技.前期为迎接军运会顺利召开,武汉市很多单位和部门都开展了丰富多彩的宣传和教育活动,努力让大家更多的了解军运会的相关知识,并倡议大家做文明公民.武汉市体育局为了解广大民众对军运会知识的知晓情况,在全市开展了网上问卷调查,民众参与度极高,现从大批参与者中随机抽取200名幸运参与者,他们得分(满分100分)数据,统计结果如下:

组别

频数

5

30

40

50

45

20

10

1)若此次问卷调查得分整体服从正态分布,用样本来估计总体,设分别为这200人得分的平均值和标准差(同一组数据用该区间中点值作为代表),求的值(的值四舍五入取整数),并计算

2)在(1)的条件下,为感谢大家参与这次活动,市体育局还对参加问卷调查的幸运市民制定如下奖励方案:得分低于的可以获得1次抽奖机会,得分不低于的可获得2次抽奖机会,在一次抽奖中,抽中价值为15元的纪念品A的概率为,抽中价值为30元的纪念品B的概率为.现有市民张先生参加了此次问卷调查并成为幸运参与者,记Y为他参加活动获得纪念品的总价值,求Y的分布列和数学期望,并估算此次纪念品所需要的总金额.

(参考数据:.

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网