题目内容
在等差数列
中,已知
+
+
=39,
+
+
=33,则
+
+
=
( )
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823185753761494.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823185753777314.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823185753808340.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823185753824349.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823185754042352.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823185754058348.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823185754073361.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823185754089359.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823185754104342.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823185754120355.png)
( )
A.30 | B.27 | C.24 | D.21 |
B
分析:根据等差数列的性质:若m,n,p,q∈N*,且m+n=p+q,则有am+an=ap+aq,可得a4=13,a5=11,进而求出答案.
解答:解:因为 在等差数列{an}中,若m,n,p,q∈N*,且m+n=p+q,则有am+an=ap+aq,
所以
+
+
=39,
+
+
=33,,
即a4=13,a5=11,
所以a6=2a5-a4=9,
+
+
=3 a6=27
故选B.
点评:解决此类问题的关键是熟练掌握等差数列的有关性质,并且加以准确的运算.
解答:解:因为 在等差数列{an}中,若m,n,p,q∈N*,且m+n=p+q,则有am+an=ap+aq,
所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823185753777314.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823185753808340.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823185753824349.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823185754042352.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823185754058348.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823185754073361.png)
即a4=13,a5=11,
所以a6=2a5-a4=9,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823185754089359.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823185754104342.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823185754120355.png)
故选B.
点评:解决此类问题的关键是熟练掌握等差数列的有关性质,并且加以准确的运算.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目