题目内容

点P是双曲线
x2
4
-y2
=1的右支上一点,M、N分别是圆(x+
5
)2+y2
=1和圆(x-
5
)2+y2
=1上的点,则|PM|-|PN|的最大值是______.
双曲线
x2
4
-y2
中,如图:
∵a=2,b=1,c=
a2+b2
=
5

∴F1(-
5
,0),F2
5
,0),
∴|MP|≤|PF1|+|MF1|,…①
∵|PN|≥|PF2|-|NF2|,
可得-|PN|≤-|PF2|+|NF2|,…②
∴①②相加,得
|PM|-|PN|≤|PF1|+|MF1|-|PF2|+|NF2|
=(|PF1|-|PF2|)+|MF1|+|NF2|
∵|PF1|-|PF2|=2a=2
5
,|MF1|=|NF2|=1
∴|PM|-|PN|≤2
5
+1+1=2+2
5

故答案为:2+2
5
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网