题目内容
【题目】如图,动点到两定点、构成,且,设动点的轨迹为.
(1)求轨迹的方程;
(2)设直线与轴交于点,与轨迹相交于点,且,求的取值范围.
【答案】(1)3x2-y2-3=0(x>1);(2)
【解析】
试题(1)首先由题意可知,显然,当时,点的坐标为,当时,,可将转化为正切值即斜率之间的关系,从而可以得到,所满足的关系式,即可得到轨迹方程:,即,化简可得,,而点也在曲线,轨迹的方程为;(2)首先将直线方程与轨迹的方程联立,消去并化简后可得:,故若设,的坐标分别为,,则问题等价于在有两个大于的根,,且的条件下,求的取值范围,因此首先根据方程有两个大于的正根,可求得的取值范围是,再由求根公式,可将表示为关于的函数关系:,在下,可得,即的取值范围是.
试题解析:(1)设的坐标为,显然有,且,
当时,点的坐标为,
当时,,由,
有,即,化简可得,,而点也在曲线,
综上可知,轨迹的方程为;
(2)由,消去并整理,得,
由题意,方程有两根且均在内.设f(x)=x2-4mx+m2+3,
∴,解得,且,
又∵,∴,设,的坐标分别为,,由及方程有
,,
∴,
由,得,
故的取值范围是.
【题目】为实现国民经济新“三步走”的发展战略目标,国家加大了扶贫攻坚的力度.某地区在2015 年以前的年均脱贫率(脱离贫困的户数占当年贫困户总数的比)为.2015年开始,全面实施“精准扶贫”政策后,扶贫效果明显提高,其中2019年度实施的扶贫项目,各项目参加户数占比(参加该项目户数占 2019 年贫困户总数的比)及该项目的脱贫率见下表:
实施项目 | 种植业 | 养殖业 | 工厂就业 | 服务业 |
参加用户比 | ||||
脱贫率 |
那么年的年脱贫率是实施“精准扶贫”政策前的年均脱贫率的( )
A.B.C.D.
【题目】从集市上买回来的蔬菜仍存有残留农药,食用时需要清洗数次,统计表中的表示清洗的次数,表示清洗次后千克该蔬菜残留的农药量(单位:微克).
x | 1 | 2 | 3 | 4 | 5 |
y | 4.5 | 2.2 | 1.4 | 1.3 | 0.6 |
(1)在如图的坐标系中,描出散点图,并根据散点图判断,与哪一个适宜作为清洗次后千克该蔬菜残留的农药量的回归方程类型;(给出判断即可,不必说明理由)
(2)根据判断及下面表格中的数据,建立关于的回归方程;
表中,.
3 | 2 | 0.12 | 10 | 0.09 | -8.7 | 0.9 |
(3)对所求的回归方程进行残差分析.
附:①线性回归方程中系数计算公式分别为,;
②,说明模拟效果非常好;
③,,,,.