题目内容
【题目】原始的蚊香出现在宋代.根据宋代冒苏轼之名编写的《格物粗谈》记载:“端午时,贮浮萍,阴干,加雄黄,作纸缠香,烧之,能祛蚊虫.”如图,为某校数学兴趣小组用数学软件制作的“螺旋蚊香”,画法如下:在水平直线上取长度为1的线段,做一个等边三角形,然后以点为圆心,为半径逆时针画圆弧,交线段的延长线于点,再以点为圆心,为半径逆时针画圆弧,交线段的延长线于点,以此类推,当得到的“螺旋蚊香”与直线恰有个交点时,“螺旋蚊香”的总长度的最小值为( )
A.B.C.D.
【答案】A
【解析】
根据画圆弧的规律:分别以B,C,A为圆心,抽象半径长度的数列,明确圆弧与直线的交点情况,再根据当“螺旋蚊香”与直线恰有个交点时,若使“螺旋蚊香”的总长度最小,确定数列的项数,求得最后圆弧的半径即可.
如图所示:
当以B为圆心,半径为:1,4,7,10,…除起点外,与直线无交点,①
当以C为圆心,半径为:2,5,8,11,…与直线有一个点,②
当以A为圆心,半径为:3,6,9,12,…除终点(即①的起点,点A除外)外,与直线无交点,③
所以当“螺旋蚊香”与直线恰有个交点时,若使“螺旋蚊香”的总长度最小,
则完成整数个循环,
所以以B为圆心的弧与直线只有交点A,以C为圆心的弧与直线10个交点,以A为圆心的弧与直线有10个交点,
即数列②有10项,数列③有10项,
所以最后一个圆弧的半径为,
所以“螺旋蚊香”的总长度的最小值为.
故选:A
【题目】某单位在2019年重阳节组织50名退休职工(男、女各25名)旅游,退休职工可以选择到甲、乙两个景点其中一个去旅游.他们最终选择的景点的结果如下表:
男性 | 女性 | |
甲景点 | 20 | 10 |
乙景点 | 5 | 15 |
(1)据此资料分析,是否有的把握认为选择哪个景点与性别有关?
(2)按照游览不同景点用分层抽样的方法,在女职工中选取5人,再从这5人中随机抽取2人进行采访,求这2人游览的景点不同的概率.
附:,.
P() | 0.010 | 0.005 | 0.001 |
k | 6.635 | 7.879 | 10.828 |
【题目】某省即将实行新高考,不再实行文理分科.某校为了研究数学成绩优秀是否对选择物理有影响,对该校2018级的1000名学生进行调查,收集到相关数据如下:
(1)根据以上提供的信息,完成列联表,并完善等高条形图;
选物理 | 不选物理 | 总计 | |
数学成绩优秀 | |||
数学成绩不优秀 | 260 | ||
总计 | 600 | 1000 |
(2)能否在犯错误的概率不超过0.05的前提下认为数学成绩优秀与选物理有关?
附:
临界值表:
0.10 | 0.05 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 6.635 | 7.879 | 10.828 |
【题目】一饮料店制作了一款新饮料,为了进行合理定价先进行试销售,其单价(元)与销量(杯)的相关数据如下表:
单价(元) | 8.5 | 9 | 9.5 | 10 | 10.5 |
销量(杯) | 120 | 110 | 90 | 70 | 60 |
(1)已知销量与单价具有线性相关关系,求关于的线性回归方程;
(2)若该款新饮料每杯的成本为8元,试销售结束后,请利用(1)所求的线性回归方程确定单价定为多少元时,销售的利润最大?(结果四舍五入保留到整数)
附:线性回归方程中斜率和截距最小二乗法估计计算公式:,,,.