ÌâÄ¿ÄÚÈÝ
6£®ÔÚÖ±½Ç×ø±êϵxOyÖУ¬ÒÔÔµãOΪ¼«µã£¬ÒÔxÖáÕý°ëÖáΪ¼«Öᣬ½¨Á¢¼«×ø±êϵ£¬ÇúÏßC1µÄ¼«×ø±ê·½³ÌΪ¦Ñ£¨sin¦È+cos¦È£©=1£¬ÇúÏßC2µÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=2cos¦È}\\{y=sin¦È}\end{array}\right.$£¨¦ÈΪ²ÎÊý£©£®£¨¢ñ£©ÇóÇúÏßC1µÄÖ±½Ç×ø±ê·½³ÌÓëÇúÏßC2µÄÆÕͨ·½³Ì£»
£¨¢ò£©ÊÔÅжÏÇúÏßC1ÓëC2ÊÇ·ñ´æÔÚÁ½¸ö½»µã£¿Èô´æÔÚ£¬Çó³öÁ½½»µã¼äµÄ¾àÀ룻Èô²»´æÔÚ£¬ËµÃ÷ÀíÓÉ£®
·ÖÎö £¨¢ñ£© ÓÉÌõ¼þ¸ù¾Ý¼«×ø±êÓëÖ±½Ç×ø±êµÄ»¥»¯¹«Ê½ÇóµÃÇúÏßC1µÄÖ±½Ç×ø±ê·½³Ì£»°ÑÇúÏßC2µÄ²ÎÊý·½³ÌÖеIJÎÊýÏûÈ¥£¬×ª»¯ÎªÆÕͨ·½³Ì£®
£¨¢ò£©°ÑÇúÏßC1ÓëC2ÊÇÁªÁ¢·½³Ì×é¸ù¾ÝÅбðʽ´óÓÚÁã¿ÉµÃÇúÏßC1ÓëC2ÊÇÏཻÓÚÁ½¸öµã£»Çó³ö·½³Ì×éµÄ½â£¬¿ÉµÃÁ½¸ö½»µãµÄ×ø±ê£¬´Ó¶øÇóµÃÁ½½»µã¼äµÄ¾àÀ룮
½â´ð ½â£º£¨¢ñ£©ÓÉÇúÏßC1µÄ¼«×ø±ê·½³ÌΪ¦Ñ£¨sin¦È+cos¦È£©=1£¬¿ÉµÃËüµÄÖ±½Ç×ø±ê·½³ÌΪx+y=1£¬
¸ù¾ÝÇúÏßC2µÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=2cos¦È}\\{y=sin¦È}\end{array}\right.$£¨¦ÈΪ²ÎÊý£©£¬¿ÉµÃËüµÄÆÕͨ·½³ÌΪ $\frac{{x}^{2}}{4}$+y2=1£®
£¨¢ò£©°ÑÇúÏßC1ÓëC2ÊÇÁªÁ¢·½³Ì×é $\left\{\begin{array}{l}{x+y=1}\\{\frac{{x}^{2}}{4}{+y}^{2}=1}\end{array}\right.$£¬»¯¼ò¿ÉµÃ 5x2-8x=0£¬ÏÔÈ»¡÷=64£¾0£¬
¹ÊÇúÏßC1ÓëC2ÊÇÏཻÓÚÁ½¸öµã£®
½â·½³Ì×éÇóµÃ$\left\{\begin{array}{l}{x=0}\\{y=1}\end{array}\right.$£¬»ò $\left\{\begin{array}{l}{x=\frac{8}{5}}\\{y=-\frac{3}{5}}\end{array}\right.$£¬¿ÉµÃÕâ2¸ö½»µãµÄ×ø±ê·Ö±ðΪ£¨0£¬1£©¡¢£¨$\frac{8}{5}$£¬-$\frac{3}{5}$£©£®
µãÆÀ ±¾ÌâÖ÷Òª¿¼²é°Ñ¼«×ø±ê·½³Ì»¯ÎªÖ±½Ç×ø±ê·½³Ì£¬°Ñ²ÎÊý·½³Ì»¯ÎªÆÕͨ·½³ÌµÄ·½·¨£¬ÇóÁ½ÌõÇúÏߵĽ»µã£¬ÊôÓÚ»ù´¡Ì⣮
A£® | a£¼b£¼c | B£® | c£¾b£¾a | C£® | c£¼a£¼b | D£® | c£¾a£¾b |
A£® | 2 | B£® | 1 | C£® | $\sqrt{2}$ | D£® | $2\sqrt{2}$ |
A£® | [-1£¬+¡Þ£© | B£® | £¨-¡Þ£¬-1]¡È[3£¬+¡Þ£© | C£® | [-1£¬3] | D£® | £¨-¡Þ£¬3] |