题目内容
【题目】如图所示,已知抛物线C:y2=4x的焦点为F,直线l经过点F且与抛物线C相交于A、B两点.
(1)若线段AB的中点在直线y=2上,求直线l的方程;
(2)若线段|AB|=20,求直线l的方程.
【答案】(1);(2)
【解析】试题分析:(1)设直线l的斜率为k,A(x1,y1),B(x2,y2),AB的中点M(x0,y0),由点差法,可得2y0k=4,又,所以。(2)设直线l的方程为x=my+1,与抛物线联立组方程组,由弦长公式与志达定理,可求得参数m的值.
试题解析:(1)由已知得抛物线的焦点为F(1,0).因为线段AB的中点在直线y=2上,所以直线l的斜率存在,设直线l的斜率为k,A(x1,y1),B(x2,y2),AB的中点M(x0,y0),
则由得
(y1+y2)(y1-y2)=4(x1-x2),所以2y0k=4.
又y0=2,所以k=1,故直线l的方程是y=x-1.
(2)设直线l的方程为x=my+1,与抛物线方程联立得消元得y2-4my-4=0,所以y1+y2=4m,y1y2=-4,Δ=16(m2+1)>0.
|AB|=|y1-y2|=·
=·=4(m2+1).
所以4(m2+1)=20,解得m=±2,
所以直线l的方程是x=±2y+1,
即x±2y-1=0.
练习册系列答案
相关题目