题目内容
【题目】某同学用“五点法”画函数在某一个周期内的图象时,列表并填入了部分数据,如下表:
0 | π | 2π | |||
x | |||||
0 | 4 | -4 | 0 |
(1)请将上表数据补充完整,填写在答题卡上相应位置,并直接写出函数f(x)的解析式;
(2)将图象上所有点向左平行移动θ()个单位长度,得到的图象.若图象的一个对称中心为,求θ的最小值.
【答案】(1)见解析,(2).
【解析】
(1)由题意,根据三角函数“五点法作图”,确定参数,,.即可补全表格数据.
(2)根据图像平移法则:左加右减,得到的解析式,令,即可求解参数值.
(1)根据表中已知数据,解得,,.数据补全如下表:
0 | π | 2π | |||
x | |||||
0 | 4 | 0 | -4 | 0 |
且函数表达式为.
(2)由(1)知,得
因为的对称中心为,.
令,解得,.
由于函数的图象关于点成中心对称,令,
解得,,由可知,当时,θ取得最小值.
练习册系列答案
相关题目
【题目】进入12月以来,某地区为了防止出现重污染天气,坚持保民生、保蓝天,严格落实机动车限行等一系列“管控令”,该地区交通管理部门为了了解市民对“单双号限行”的赞同情况,随机采访了220名市民,将他们的意见和是否拥有私家车情况进行了统计,得到如下的2×2列联表:
| 赞同限行 | 不赞同限行 | 合计 |
没有私家车 | 90 | 20 | 110 |
有私家车 | 70 | 40 | 110 |
合计 | 160 | 60 | 220 |
(1)根据上面的列联表判断,能否有99%的把握认为“赞同限行与是否拥有私家车”有关;
(2)为了解限行之后是否对交通拥堵、环境污染起到改善作用,从上述调查的不赞同限行的人员中按分层抽样抽取6人,再从这6人中随机抽出2名进行电话回访,求抽到的2人中至少有1名“没有私家车”人员的概率.
参考公式:K2=
P(K2≥k) | 0.10 | 0.05 | 0.010 | 0.005 | 0.001 |
k | 2.706 | 3..841 | 6.635 | 7.879 | 10.828 |