题目内容
【题目】如图,三棱柱中,侧面是菱形,.
(1)证明:;
(2)若,,,求直线与平面所成角的正弦值.
【答案】(1)见解析(2)
【解析】
(1)连接交于点,连接,可证平面,得B1C⊥AO,B10=CO,进而可得AC=AB1;(2)先根据已知条件证明平面以为原点,所在直线为坐标轴建立空间直角坐标系,求得平面的一个法向量,然后利用向量公式即可求得结果.
(1)连接交于点,连接,
∵四边形是菱形,∴且为中点,
∵,,∴平面,
平面,∴,
为中点,为的垂直平分线,
∴.
(2)不妨设,则,,
∵,∴,,
又,,∴平面
(方法一)以为原点,所在直线为坐标轴建立空间直角坐标系,
则,,,
设平面的一个法向量为,则
,
,设,
直线与平面所成角的正弦值,即直线与平面所成角的正弦值为
(方法二)设点到平面的距离为,
三棱锥的体积
三棱锥的体积
解,得
直线与平面所成角的正弦值,即直线与平面所成角的正弦值为.
【题目】某同学用“五点法”画函数在某一个周期内的图象时,列表并填入了部分数据,如下表:
0 | π | 2π | |||
x | |||||
0 | 4 | -4 | 0 |
(1)请将上表数据补充完整,填写在答题卡上相应位置,并直接写出函数f(x)的解析式;
(2)将图象上所有点向左平行移动θ()个单位长度,得到的图象.若图象的一个对称中心为,求θ的最小值.
【题目】在中学生综合素质评价某个维度的测评中,分优秀、合格、尚待改进三个等级进行学生互评.某校高一年级有男生500人,女生400人,为了了解性别对该维度测评结果的影响,采用分层抽样方法从高一年级抽取了45名学生的测评结果,并作出频数统计表如下:
表一:男生
男生 | 等级 | 优秀 | 合格 | 尚待改进 |
频数 | 15 | 5 |
表二:女生
女生 | 等级 | 优秀 | 合格 | 尚待改进 |
频数 | 15 | 3 |
(1)求,的值;
(2)从表二的非优秀学生中随机抽取2人交谈,求所选2人中恰有1人测评等级为合格的概率;
(3)由表中统计数据填写列联表,并判断是否有90%的把握认为“测评结果优秀与性别有关”.
男生 | 女生 | 总计 | |
优秀 | |||
非优秀 | |||
总计 | 45 |
参考公式:,其中.
参考数据:
0.01 | 0.05 | 0.01 | |
| 2.706 | 3.841 | 6.635 |