题目内容

已知平面内一动点P到点F(2,0)的距离比点P到y轴的距离大2,
(Ⅰ)求动点P的轨迹C的方程;
(Ⅱ)过点F且斜率为2
2
的直线交轨迹C于A(x1,y1),B(x2,y2)(x1<x2)两点,P(x3,y3)(x3≥0)为轨迹C上一点,若
OP
=
OA
OB
,求λ的值.
(Ⅰ)设动点P的坐标为(x,y),
∵平面内一动点P到点F(2,0)的距离比点P到y轴的距离大2,
(x-2)2+y2
=|x|+2,
当x≥0时,整理,得y2=8x,
当x<0时,整理,得y2=0,
∴动点P的轨迹方程为y2=8x,x≥0,或y=0,x<0.
(Ⅱ)∵过点F且斜率为2
2
的直线:y=2
2
(x-2),
该直线轨迹C于A(x1,y1),B(x2,y2)(x1<x2)两点,
y=2
2
(x-2)
y2=8x
,整理,得x2-5x+4=0,
解得x1=1,x2=4,∴A(1,-2
2
),B(4,4
2
),
∵P(x3,y3)(x3≥0)为轨迹C上一点,
∴P(x3,2
2x3
),
OP
=
OA
OB

∴(x3,2
2x3
)=(1,-2
2
)+(4λ,4
2
λ
)=(1+4λ,-2
2
+4
2
λ
),
x3=1+4λ
2
2x3
=-2
2
+4
2
λ

整理,得
1+4λ
=-1+2λ,
解得λ=0(舍),或λ=2,
∴λ=2.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网