题目内容

19.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)与抛物线y2=8x有一个共同的焦点F,且两曲线的一个交点为P,若|PF|=5,则点F到双曲线的渐进线的距离为(  )
A.$\sqrt{3}$B.2C.$\sqrt{6}$D.3

分析 根据抛物线和双曲线有相同的焦点求得p和c的关系,根据抛物线的定义可以求出P的坐标,代入双曲线方程与p=2c,b2=c2-a2,解得a,b,得到渐近线方程,再由点到直线的距离公式计算即可得到.

解答 解:∵抛物线y2=8x的焦点坐标F(2,0),p=4,
抛物线的焦点和双曲线的焦点相同,
∴p=2c,即c=2,
∵设P(m,n),由抛物线定义知:
|PF|=m+$\frac{p}{2}$=m+2=5,∴m=3.
∴P点的坐标为(3,$±2\sqrt{6}$)
∴$\left\{\begin{array}{l}{{a}^{2}+{b}^{2}=4}\\{\frac{9}{{a}^{2}}-\frac{24}{{b}^{2}}=1}\end{array}\right.$解得:$\left\{\begin{array}{l}{a=1}\\{b=\sqrt{3}}\end{array}\right.$,
则渐近线方程为y=$±\sqrt{3}$x,
即有点F到双曲线的渐进线的距离为
d=$\frac{|2\sqrt{3}|}{\sqrt{3+1}}$=$\sqrt{3}$,
故选:A.

点评 本题主要考查了双曲线,抛物线的简单性质.考查了学生综合分析问题和基本的运算能力.解答关键是利用性质列出方程组.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网