题目内容
【题目】椭圆C: 的左、右焦点分别是F1、F2,离心率为,过F1且垂直于x轴的直线被椭圆C截得的线段长为l.
(1)求椭圆C的方程;
(2)点P是椭圆C上除长轴端点外的任一点,连接PF1、PF2,设∠F1PF2的角平分线PM交C的长轴于点M(m,0),求m的取值范围.
(3)在(2)的条件下,过点P作斜率为k的直线l,使得l与椭圆C有且只有一个公共点.设直线PF1、PF2的斜率分别为k1、k2,若k≠0,试证明为定值,并求出这个定值.
【答案】(1);(2);(3)-8
【解析】试题(1)根据题意可得又因为,所以可得a,b的值,即可得方程;(2)设出点p坐标,由两点式列出直线方程,然后利用点m到两直线的距离相等来确定m值,再根据p点,横坐标的范围,来确定m范围;(3)设直线方程为与椭圆方程联立,需满足求得,由(2)可知,代入化简即可
试题解析:(1)由于
由题意知
又
(2)设
由题意知
由于点P在椭圆上,所以
所以
(3)设则直线l的方程为
联立
由题意得
又
由(2)知
所以
因此
【题目】某车间为了规定工时定额,需要确定加工零件所花费的时间,为此作了四次试验,得到的数据如下:
零件的个数x(个) | 2 | 3 | 4 | 5 |
加工的时间y(小时) | 2.5 | 3 | 4 | 4.5 |
(1)求出y关于x的线性回归方程;
(2)试预测加工10个零件需要多少小时?
(注:=,=-b)
【题目】下表为北京市居民用水阶梯水价表(单位:元/立方米).
阶梯 | 户年用水量 (立方米) | 水价 | 其中 | ||
自来水费 | 水资源费 | 污水处理费 | |||
第一阶梯 | 0-180(含) | 5.00 | 2.07 | 1.57 | 1.36 |
第二阶梯 | 181-260(含) | 7.00 | 4.07 | ||
第三阶梯 | 260以上 | 9.00 | 6.07 |
(Ⅰ)试写出水费(元)与用水量(立方米)之间的函数关系式;
(Ⅱ)若某户居民年交水费1040元,求其中自来水费、水资源费及污水处理费各是多少?