ÌâÄ¿ÄÚÈÝ
5£®¸ø³öÏÂÁÐÃüÌ⣺£¨1£©ÉèÓÐÒ»¸ö»Ø¹é·½³Ì$\stackrel{¡Ä}{y}$=3-5x£¬±äÁ¿xÔö¼ÓÒ»¸öµ¥Î»Ê±£¬yƽ¾ùÔö¼Ó5¸öµ¥Î»£»
£¨2£©ÏßÐԻع鷽³Ì$\stackrel{¡Ä}{y}$=$\stackrel{¡Ä}{b}$x+$\stackrel{¡Ä}{a}$ ±Ø¹ýµã£¨$\overline{x}$£¬$\overline{y}$£©£»
£¨3£©ÏßÐÔÏà¹ØϵÊýrÔ½´ó£¬Á½¸ö±äÁ¿µÄÏßÐÔÏà¹ØÐÔԽǿ£»·´Ö®£¬ÏßÐÔÏà¹ØÐÔÔ½Èõ£»
£¨4£©²Ð²îƽ·½ºÍԽСµÄÄ£ÐÍ£¬Ä£ÐÍÄâºÏµÄЧ¹ûÔ½ºÃ£»
£¨5£©ÓÃÏà¹ØÖ¸ÊýR2À´¿Ì»»Ø¹éЧ¹û£¬R2ԽС£¬ËµÃ÷Ä£Ð͵ÄÄâºÏЧ¹ûÔ½ºÃ£®
ÆäÖÐÕýÈ· µÄÃüÌâÊÇ£¨¡¡¡¡£©
A£® | £¨1£©£¨4£© | B£® | £¨2£©£¨ 4£© | C£® | £¨2£©£¨ 3£©£¨ 4£© | D£® | £¨2£©£¨ 5£© |
·ÖÎö £¨1£©»Ø¹é·½³Ì$\stackrel{¡Ä}{y}$=3-5xʱ£¬±äÁ¿xÔö¼ÓÒ»¸öµ¥Î»£¬yƽ¾ù¼õÉÙ5¸öµ¥Î»£»
£¨2£©ÏßÐԻع鷽³Ì$\stackrel{¡Ä}{y}$=$\stackrel{¡Ä}{b}$x+$\stackrel{¡Ä}{a}$¹ýÑù±¾ÖÐÐĵ㣨$\overline{x}$£¬$\overline{y}$£©£»
£¨3£©ÏßÐÔÏà¹ØϵÊý|r|Ô½½Ó½ü1£¬Á½¸ö±äÁ¿µÄÏßÐÔÏà¹ØÐÔԽǿ£»
£¨4£©²Ð²îƽ·½ºÍԽСµÄÄ£ÐÍ£¬Ä£ÐÍÄâºÏµÄЧ¹û¾ÍÔ½ºÃ£»
£¨5£©ÓÃÏà¹ØÖ¸ÊýR2À´¿Ì»»Ø¹éЧ¹ûʱ£¬R2Ô½´ó£¬Ä£Ð͵ÄÄâºÏЧ¹ûÔ½ºÃ£®
½â´ð ½â£º¶ÔÓÚ£¨1£©£¬µ±»Ø¹é·½³ÌΪ$\stackrel{¡Ä}{y}$=3-5xʱ£¬±äÁ¿xÔö¼ÓÒ»¸öµ¥Î»£¬yƽ¾ù¼õÉÙ5¸öµ¥Î»£¬
¡àÃüÌ⣨1£©´íÎó£»
¶ÔÓÚ£¨2£©£¬ÏßÐԻع鷽³Ì$\stackrel{¡Ä}{y}$=$\stackrel{¡Ä}{b}$x+$\stackrel{¡Ä}{a}$¹ýÑù±¾ÖÐÐĵ㣨$\overline{x}$£¬$\overline{y}$£©£¬
¡àÃüÌ⣨2£©ÕýÈ·£»
¶ÔÓÚ£¨3£©£¬ÏßÐÔÏà¹ØϵÊý|r|Ô½´ó£¬Á½¸ö±äÁ¿µÄÏßÐÔÏà¹ØÐÔԽǿ£»·´Ö®£¬ÏßÐÔÏà¹ØÐÔÔ½Èõ£¬
¡àÃüÌ⣨3£©´íÎó£»
¶ÔÓÚ£¨4£©£¬²Ð²îƽ·½ºÍԽСµÄÄ£ÐÍ£¬Ä£ÐÍÄâºÏµÄЧ¹û¾ÍÔ½ºÃ£¬·´Ö®£¬Ä£ÐÍÄâºÏµÄЧ¹û¾ÍÔ½²î£¬
¡àÃüÌ⣨4£©ÕýÈ·£»
¶ÔÓÚ£¨5£©£¬ÓÃÏà¹ØÖ¸ÊýR2À´¿Ì»»Ø¹éЧ¹û£¬R2Ô½´ó£¬ËµÃ÷Ä£Ð͵ÄÄâºÏЧ¹ûÔ½ºÃ£¬
¡àÃüÌ⣨5£©´íÎó£»
×ÛÉÏ£¬ÕýÈ·µÄÃüÌâÊÇ£¨2£©¡¢£¨4£©£®
¹ÊÑ¡£ºB£®
µãÆÀ ±¾Ì⿼²éÁ˻عé·ÖÎöµÄÓ¦ÓÃÎÊÌ⣬Ҳ¿¼²éÁËÏßÐÔÏà¹ØϵÊý¡¢²Ð²îÒÔ¼°Ïà¹ØÖ¸ÊýµÄÓ¦ÓÃÎÊÌ⣬ÊÇ»ù´¡ÌâÄ¿£®
A£® | $y=4sin£¨\frac{2x}{3}+\frac{¦Ð}{3}£©$ | B£® | $y=4sin£¨\frac{2x}{3}-\frac{2¦Ð}{3}£©$ | C£® | $y=4cos£¨\frac{2x}{3}+\frac{¦Ð}{3}£©$ | D£® | $y=4cos£¨\frac{2x}{3}-\frac{2¦Ð}{3}£©$ |
A£® | $\overrightarrow b+\frac{1}{2}\overrightarrow a$ | B£® | $\overrightarrow b-\frac{1}{2}\overrightarrow a$ | C£® | $\overrightarrow a+\frac{1}{2}\overrightarrow b$ | D£® | $\overrightarrow a-\frac{1}{2}\overrightarrow b$ |
A£® | 4 | B£® | -4 | C£® | -5 | D£® | ¡À4 |