题目内容
3.已知集合A={x|(x-2)(x+3)<0},x∈R},B={x|1≤x≤3,x∈R },则A∩B=( )A. | [1,2) | B. | [1,2] | C. | (2,3] | D. | [2.3] |
分析 求出集合的等价条件,根据集合的基本运算进行求解即可.
解答 解:因为A={x|(x-2)(x+3)<0}}=(-3,2),B={x|1≤x≤3}=[1,3],
所以A∩B=[1,2),
故选:A
点评 本题主要考查集合的基本运算,求出集合的等价条件是解决本题的关键.
练习册系列答案
相关题目
11.已知A,B是抛物线y2=4x上异于顶点O的两个点,直线OA与直线OB的斜率之积为定值-4,F为抛物线的焦点,△AOF,△BOF的面积分别为S1,S2,则S12+S22的最小值为( )
A. | 8 | B. | 6 | C. | 4 | D. | 2 |
15.在中学生综合素质评价某个维度的测评中,分“优秀、合格、尚待改进”三个等级进行学生互评.某校高一年级有男生500人,女生400人,为了解性别对该维度测评结果的影响,采取分层抽样的方法从高一年级抽取了45名学生进行测评,得到下面的频数统计表:
表1:男生
表2:女生
( I)从表2的非优秀学生中随机选取2人交谈,求所选2人中恰有1人测评等级为合格的概率;
( II)由表中统计数据填写下面2×2列联表,并判断是否有90%的把握认为“测评结果优秀与性别有关”?
附:
${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.
表1:男生
等级 | 优秀 | 合格 | 尚待改进 |
频数 | 15 | 3 | y |
等级 | 优秀 | 合格 | 尚待改进 |
频数 | 15 | x | 5 |
( II)由表中统计数据填写下面2×2列联表,并判断是否有90%的把握认为“测评结果优秀与性别有关”?
男生 | 女生 | 总计 | |
优秀 | |||
非优秀 | |||
总计 |
P(K2≥k0) | 0.100 | 0.050 | 0.010 |
k0 | 2.706 | 3.841 | 6.635 |
15.甲、乙两人抢答竞赛题,甲答对的概率为$\frac{1}{5}$,乙答对的概率为$\frac{1}{4}$,则两人恰有一人答对的概率为( )
A. | $\frac{7}{20}$ | B. | $\frac{12}{20}$ | C. | $\frac{1}{20}$ | D. | $\frac{2}{20}$ |
16.已知,x,y∈R,则“|x+y|=|x|+|y|”是“xy>0”的( )
A. | 充分不必要条件 | B. | 必要不充分条件 | ||
C. | 充要条件 | D. | 既不充分也不必要条件 |