题目内容

如图C,D是以AB为直径的圆上的两点,,F是AB上的一点,且,将圆沿AB折起,使点C在平面ABD的射影E在BD上,已知

(1)求证:AD平面BCE
(2)求证:AD//平面CEF;
(3)求三棱锥A-CFD的体积.
(1)参考解析;(2)参考解析;(3)

试题分析:(1)因为由于AB是圆的直径,所以AD⊥BD,又因为点C在平面ABD的射影E在BD上,所以CE⊥平面ADB.又因为平面ADB.所以AD⊥CE.又因为.所以AD⊥平面BCE.
(2)因为.有直角三角形的勾股定理可得.在直角三角形BCE中,又.所以.又BD=3,.所以可得.所以AD∥FE,又因为平面CEF, 平面CE.所以AD//平面CEF.
(3)通过转换顶点三棱锥A-CFD的体积.因为.所以.
试题解析:(1)证明:依题意: 
平面   ∴ 
    ∴平面.           4分
(2)证明:中, ∴
中, ∴
 . ∴
在平面外,在平面内,
平面.           8分
(3)解:由(2)知,且
平面
.       12分
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网