题目内容
【题目】某中学为研究学生的身体素质与课外体育锻炼时间的关系,对该校200名高三学生的课外体育锻炼平均每天运动的时间进行调查,如表:(平均每天锻炼的时间单位:分钟)
平均每天锻炼 | [0,10) | [10,20) | [20,30) | [30,40) | [40,50) | [50,60) |
总人数 | 20 | 36 | 44 | 50 | 40 | 10 |
将学生日均课外课外体育运动时间在[40,60)上的学生评价为“课外体育达标”.
(1)请根据上述表格中的统计数据填写下面2×2列联表,并通过计算判断是否能在犯错误的概率不超过0.01的前提下认为“课外体育达标”与性别有关?
课外体育不达标 | 课外体育达标 | 合计 | |
男 | |||
女 | 20 | 110 | |
合计 |
(2)将上述调查所得到的频率视为概率.现在从该校高三学生中,抽取3名学生,记被抽取的3名学生中的“课外体育达标”学生人数为X,若每次抽取的结果是相互独立的,求X的数学期望和方差.
参考公式: ,其中n=a+b+c+d.
参考数据:
P(K2≥k0) | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
【答案】
(1)解:列出列联表,
课外体育不达标 | 课外体育达标 | 合计 | |
男 | 60 | 30 | 90 |
女 | 90 | 20 | 110 |
合计 | 150 | 50 | 200 |
,所以在犯错误的概率不超过0.01的前提下不能判断“课外体育达标”与性别有关.
(2)解:由表中数据可得,抽到“课外体育达标”学生的频率为0.25,将频率视为概率,
∴X~B(3, ),
∴ .
【解析】(1)根据所给的数据列出列联表,再代入公式计算得出K2 , 与临界值比较即可得出结论;(2)由题意,用频率代替概率可得出抽到“课外体育达标”学生的频率为0.25,由于X~B(3, ),由公式计算出期望与方差即可.
练习册系列答案
相关题目