题目内容
【题目】设A,B,C,D为平面内的四点,且A(1,3),B(2,﹣2),C(4,1).
(1)若 = ,求D点的坐标;
(2)设向量 = , = ,若k ﹣ 与 +3 平行,求实数k的值.
【答案】
(1)解:设D(x,y).∵ ,
∴(2,﹣2)﹣(1,3)=(x,y)﹣(4,1),
化为(1,﹣5)=(x﹣4,y﹣1),
∴ ,解得 ,
∴D(5,﹣4).
(2)解:∵ =(1,﹣5), = =(4,1)﹣(2,﹣2)=(2,3).
∴ =k(1,﹣5)﹣(2,3)=(k﹣2,﹣5k﹣3), =(1,﹣5)+3(2,3)=(7,4).
∵k ﹣ 与 +3 平行,
∴7(﹣5k﹣3)﹣4(k﹣2)=0,解得k= .
∴
【解析】(1)利用向量相等即可得出;(2)利用向量共线定理即可得出.
【题目】某种产品的广告费支出x与销售额y(单位:百万元)之间有如下对应数据:
x | 2 | 4 | 5 | 6 | 8 |
y | 30 | 40 | 50 | 60 | 70 |
(1)画出散点图;
(2)求线性回归方程;
(3)预测当广告费支出为7百万元时的销售额.参考公式:.
【题目】某中学为研究学生的身体素质与课外体育锻炼时间的关系,对该校200名高三学生的课外体育锻炼平均每天运动的时间进行调查,如表:(平均每天锻炼的时间单位:分钟)
平均每天锻炼 | [0,10) | [10,20) | [20,30) | [30,40) | [40,50) | [50,60) |
总人数 | 20 | 36 | 44 | 50 | 40 | 10 |
将学生日均课外课外体育运动时间在[40,60)上的学生评价为“课外体育达标”.
(1)请根据上述表格中的统计数据填写下面2×2列联表,并通过计算判断是否能在犯错误的概率不超过0.01的前提下认为“课外体育达标”与性别有关?
课外体育不达标 | 课外体育达标 | 合计 | |
男 | |||
女 | 20 | 110 | |
合计 |
(2)将上述调查所得到的频率视为概率.现在从该校高三学生中,抽取3名学生,记被抽取的3名学生中的“课外体育达标”学生人数为X,若每次抽取的结果是相互独立的,求X的数学期望和方差.
参考公式: ,其中n=a+b+c+d.
参考数据:
P(K2≥k0) | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |