题目内容

11.已知|$\overrightarrow{a}$|=2,|$\overrightarrow{b}$|=3,|$\overrightarrow{a}$-$\overrightarrow{b}$|=$\sqrt{7}$,则<$\overrightarrow{a}$,$\overrightarrow{b}$>=$\frac{π}{3}$.

分析 由条件求得cos<$\overrightarrow{a}$,$\overrightarrow{b}$>=$\frac{1}{2}$,从而求得<$\overrightarrow{a}$,$\overrightarrow{b}$>的值.

解答 解:已知|$\overrightarrow{a}$|=2,|$\overrightarrow{b}$|=3,|$\overrightarrow{a}$-$\overrightarrow{b}$|=$\sqrt{7}$,∴${\overrightarrow{a}}^{2}$-2$\overrightarrow{a}•\overrightarrow{b}$+${\overrightarrow{b}}^{2}$=4-2×2×3cos<$\overrightarrow{a}$,$\overrightarrow{b}$>+9=7,
则cos<$\overrightarrow{a}$,$\overrightarrow{b}$>=$\frac{1}{2}$,∴<$\overrightarrow{a}$,$\overrightarrow{b}$>=$\frac{π}{3}$,
故答案为:$\frac{π}{3}$.

点评 本题主要考查两个向量的数量积的定义,根据三角函数的值求角,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网