题目内容

10.己知函数f(x)满足f(1)=$\frac{1}{4}$,对任意x,y∈R都有4f(x)f(y)=f(x+y)+f(x-y),则f(2017)=(  )
A.$\frac{1}{4}$B.$\frac{1}{2}$C.0D.1

分析 根据条件判断函数f(x)是周期函数,利用函数的周期性进行求解即可.

解答 解:取x=1,y=0得$f(0)=\frac{1}{2}$
法一:根据已知知$f(1)=\frac{1}{4}$
取x=1,y=1得f(2)=-$\frac{1}{4}$
取x=2,y=1得f(3)=-$\frac{1}{2}$
取x=2,y=2得f(4)=-$\frac{1}{4}$
取x=3,y=2得f(5)=$\frac{1}{4}$
取x=3,y=3得f(6)=$\frac{1}{2}$
猜想得周期为6;
法二:取x=1,y=0得$f(0)=\frac{1}{2}$
取x=n,y=1,有f(n)=f(n+1)+f(n-1),
同理f(n+1)=f(n+2)+f(n)
联立得f(n+2)=-f(n-1)
所以f(n)=-f(n+3)=f(n+6)
所以函数是周期函数,周期T=6,
故f(2017)=f(336×6+1)=f(1)=$\frac{1}{4}$,
故选:A.

点评 本题主要考查函数值的计算,准确找出周期是此类问题(项数很大)的关键,分别可以用归纳法和演绎法得出周期,解题时根据自己熟悉的方法得出即可.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网