题目内容
如图,在四棱锥P-ABCD中,已知PA⊥平面ABCD,PB与平面ABC成60°的角,底面ABCD是直角梯形,∠ABC=∠BAD=90°,AB=BC=
AD.
(1)求证:平面PCD⊥平面PAC;
(2)设E是棱PD上一点,且PE=
PD,求异面直线AE与PB所成的角.
1 |
2 |
(1)求证:平面PCD⊥平面PAC;
(2)设E是棱PD上一点,且PE=
1 |
3 |
如图,建立空间直角坐标系A-xyz.
∵PA⊥平面ABCD,PB与平面ABC成60°,
∴∠PBA=60°,∴PA=ABtan60°=
.
取AB=1,则A(0,0,0),B(1,0,0),C(1,1,0),P(0,0,
),D(0,2,0).
(1)∵
=(1,1,0),
=(0,0,
),
=(-1,1,0),
∴
•
=-1+1+0=0,
•
=0.
∴AC⊥CD,AP⊥CD,
∵AC∩AP=A,
∴CD⊥平面PAC.
又CD?平面PCD,
∴平面PCD⊥平面PAC.
(2)∵
=
,
=(0,2,-
),
∴
=
+
=(0,0,
)+
(0,2,-
)=(0,
,
),
∴E(0,
,
),∴
=(0,
,
).
又
=(1,0,-
),∴
•
=-2.
∴cos<
•
>=
=
=-
.
∴异面直线AE与PB所成的角为arccos
.
∵PA⊥平面ABCD,PB与平面ABC成60°,
∴∠PBA=60°,∴PA=ABtan60°=
3 |
取AB=1,则A(0,0,0),B(1,0,0),C(1,1,0),P(0,0,
3 |
(1)∵
AC |
AP |
3 |
CD |
∴
AC |
CD |
AP |
CD |
∴AC⊥CD,AP⊥CD,
∵AC∩AP=A,
∴CD⊥平面PAC.
又CD?平面PCD,
∴平面PCD⊥平面PAC.
(2)∵
PE |
1 |
3 |
PD |
PD |
3 |
∴
OE |
OP |
1 |
3 |
PD |
3 |
1 |
3 |
3 |
2 |
3 |
2
| ||
3 |
∴E(0,
2 |
3 |
2
| ||
3 |
AE |
2 |
3 |
2
| ||
3 |
又
PB |
3 |
AE |
PB |
∴cos<
AE |
PB |
| ||||
|
|
-2 | ||
|
3 |
4 |
∴异面直线AE与PB所成的角为arccos
3 |
4 |
练习册系列答案
相关题目