题目内容

如图,在四棱锥P-ABCD中,已知PA⊥平面ABCD,PB与平面ABC成60°的角,底面ABCD是直角梯形,∠ABC=∠BAD=90°,AB=BC=
1
2
AD.
(1)求证:平面PCD⊥平面PAC;
(2)设E是棱PD上一点,且PE=
1
3
PD,求异面直线AE与PB所成的角.
如图,建立空间直角坐标系A-xyz.
∵PA⊥平面ABCD,PB与平面ABC成60°,
∴∠PBA=60°,∴PA=ABtan60°=
3

取AB=1,则A(0,0,0),B(1,0,0),C(1,1,0),P(0,0,
3
),D(0,2,0).
(1)∵
AC
=(1,1,0),
AP
=(0,0,
3
),
CD
=(-1,1,0),
AC
CD
=-1+1+0=0,
AP
CD
=0.
∴AC⊥CD,AP⊥CD,
∵AC∩AP=A,
∴CD⊥平面PAC.
又CD?平面PCD,
∴平面PCD⊥平面PAC.
(2)∵
PE
=
1
3
PD
PD
=(0,2,-
3
)

OE
=
OP
+
1
3
PD
=(0,0,
3
)+
1
3
(0,2,-
3
)
=(0,
2
3
2
3
3
)

∴E(0,
2
3
2
3
3
),∴
AE
=(0,
2
3
2
3
3
).
PB
=(1,0,-
3
),∴
AE
PB
=-2.
∴cos<
AE
PB
>=
AE
PB
|
AE
|•|
PB
|
=
-2
4
3
×2
=-
3
4

∴异面直线AE与PB所成的角为arccos
3
4
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网