题目内容
【题目】以坐标原点为极点,x轴的正半轴为极轴的极坐标系中,曲线C1的极坐标方程为ρ=2sinθ,正方形ABCD的顶点都在C1上,且依次按逆时针方向排列,点A的极坐标为( , ).
(1)求点C的直角坐标;
(2)若点P在曲线C2:x2+y2=4上运动,求|PB|2+|PC|2的取值范围.
【答案】
(1)解:∵点A的极坐标为( , ),
∴点A的直角坐标是(1,1),
由A,C关于y轴对称,则C(﹣1,1)
(2)解:易得B(0,2),C(﹣1,1),
曲线C1:ρ=2sinθ的直角坐标方程是:x2+(y﹣1)2=1,
设P(x,y),x=2cosθ,y=2sinθ,
则|PB|2+|PC|2
=x2+(y﹣2)2+(x+1)2+(y﹣1)2
=2x2+2y2﹣6y+2x+6
=14+2(x﹣3y)
=14+2(2cosθ﹣6sinθ)
=14+4(cosθ﹣3sinθ)
=14+4 cos(θ+φ),
故|PB|2+|PC|2∈[14﹣4 ,14+4 ]
【解析】(1)求出A的直角坐标,根据A,C关于y轴对称,求出C的坐标即可;(2)设P(x,y),x=2cosθ,y=2sinθ,求出|PB|2+|PC|2的解析式,根据三角函数的性质求出其范围即可.
【题目】某兴趣小组欲研究昼夜温差大小与患感冒人数多少之间的关系,他们分别到气象局与某医院抄录了1至6月份每月10号的昼夜温差情况与因患感冒而就诊的人数,得到如表资料:
日 期 | 1月10日 | 2月10日 | 3月10日 | 4月10日 | 5月10日 | 6月10日 |
昼夜温差x(°C) | 10 | 11 | 13 | 12 | 8 | 6 |
就诊人数y(个) | 22 | 25 | 29 | 26 | 16 | 12 |
该兴趣小组确定的研究方案是:先从这六组数据中选取2组,用剩下的4组数据求线性回归方程,再用被选取的2组数据进行检验.
(1)求选取的2组数据恰好是相邻两个月的概率;
(2)若选取的是1月与6月的两组数据,请根据2至5月份的数据,求出关于的线性回归方程;
(3)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2人,则认为得到的线性回归方程是理想的,试问(2)中所得线性回归方程是否理想?
参考公式:,