题目内容
已知{an}是一个公差大于0的等差数列,且满足a3a6=55, a2+a7=16.
(Ⅰ)求数列{an}的通项公式:
(Ⅱ)若数列{an}和数列{bn}满足等式:an==
,求数列{bn}的前n项和Sn
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823115338136332.jpg)
(Ⅰ)求数列{an}的通项公式:
(Ⅱ)若数列{an}和数列{bn}满足等式:an==
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823115338089973.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823115338120345.jpg)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823115338136332.jpg)
(Ⅰ)
(Ⅱ)![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823115338214375.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823115338182351.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823115338214375.gif)
1)解:设等差数列
的公差为d,则依题设d>0
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823115338136332.jpg)
由a2+a7=16.得
①
由
得
②
由①得
将其代入②得
。即![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823115338619543.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823115338136332.jpg)
(2)令![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231153387281051.gif)
两式
相减得![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231153387752682.gif)
于是![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823115338806808.gif)
=
-4=![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823115338994948.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823115338229381.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823115338120345.jpg)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823115338136332.jpg)
由a2+a7=16.得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823115338307477.gif)
由
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823115338354422.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823115338370648.gif)
由①得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823115338572470.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823115338604691.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823115338619543.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231153386501224.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823115338120345.jpg)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823115338136332.jpg)
(2)令
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231153387281051.gif)
两式
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/2014082311533876073.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231153387752682.gif)
于是
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823115338806808.gif)
=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823115338900553.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823115338994948.gif)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目