题目内容
【题目】如图,三棱柱ABC﹣A1B1C1中,侧面ABB1A1为菱形且∠BAA1=60°,D,M分别为CC1和A1B的中点,A1D⊥CC1,AA1=A1D=2,BC=1.
(1)证明:直线MD∥平面ABC;
(2)求D点到平面ABC的距离.
【答案】(1)见解析; (2).
【解析】
(1)根据题意,得到共点的三条直线两两垂直,建立空间直角坐标系,利用直线的方向向量与平面的法向量垂直,从而证得线面平行;
(2)利用点D与平面ABC内的一个点连线构成的向量在平面ABC的法向量上的投影的绝对值,来求得点到平面的距离.
⑴解:,且D为中点,.
,
又,,
,.
又,.
取中点F,则,即BC、BF、两两互相垂直.
以B为原点,、BF、BC分别为x、y、z轴,建立空间直角坐标系如图所示,
则(2,0,0),C(0,0,1),A(-1,,0),(1,,0),
(2,0,1),D(1,0,1),M(,,0),B(0,0,0),
(,,1),(-1,,0),(0,0,1),
设平面ABC的法向量为(x,y,z),
则,取,得(,1,0),
,.
又平面ABC,∴直线MD//平面ABC.
(2)由(1)知平面ABC的法向量为(,1,0),(1,0,1)
∴D到平面ABC的距离:.
【题目】[2019·龙泉驿区一中]交强险是车主必须为机动车购买的险种,若普通6座以下私家车投保交强险第一年的费用(基准保费)统一为元,在下一年续保时,实行的是费率浮动机制,且保费与上一年车辆发生道路交通事故的情况相联系,发生交通事故的次数越多,费率也就越高,具体浮动情况如下表:
交强险浮动因素和费率浮动比率表 | ||
浮动因素 | 浮动比率 | |
上一个年度未发生有责任道路交通事故 | 下浮 | |
上两个年度未发生有责任道路交通事故 | 下浮 | |
上三个以及以上年度未发生有责任道路交通事故 | 下浮 | |
上一个年度发生一次有责任不涉及死亡的道路交通事故 | ||
上一个年度发生两次及两次以上有责任道路交通事故 | 上浮 | |
上一个年度发生有责任道路交通死亡事故 | 上浮 |
某机构为了研究某一品牌普通6座以下私家车的投保情况,随机抽取了70辆车龄已满三年该品牌同型号私家车的下一年续保时的情况,统计得到了下面的表格:
类型 | ||||||
数量 | 10 | 13 | 7 | 20 | 14 | 6 |
(1)求一辆普通6座以下私家车在第四年续保时保费高于基本保费的频率;
(2)某二手车销售商专门销售这一品牌的二手车,且将下一年的交强险保费高于基本保费的车辆记为事故车.假设购进一辆事故车亏损6000元,一辆非事故车盈利10000元,且各种投保类型车的频率与上述机构调查的频率一致,完成下列问题:
①若该销售商店内有7辆(车龄已满三年)该品牌二手车,某顾客欲在店内随机挑选2辆,求这2辆车恰好有一辆为事故车的概率;
②若该销售商一次性购进70辆(车龄已满三年)该品牌二手车,求一辆车盈利的平均值(结果用分数表示).